conserved charges
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 57)

H-INDEX

31
(FIVE YEARS 5)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Fiona K. Seibold ◽  
Alessandro Sfondrini

Abstract Two distinct η-deformations of strings on AdS5×S5 can be defined; both amount to integrable quantum deformations of the string non-linear sigma model, but only one is itself a superstring background. In this paper we compare their conjectured all-loop worldsheet S matrices and derive the corresponding Bethe equations. We find that, while the S matrices are apparently different, they lead to the same Bethe equations. Moreover, in either case the eigenvalues of the transfer matrix, which encode the conserved charges of each system, also coincide. We conclude that the integrable structure underlying the two constructions is essentially the same. Finally, we write down the full Bethe-Yang equations describing the asymptotic spectrum of the superstring background.


Author(s):  
Katja Klobas ◽  
Tomaz Prosen

Abstract We introduce a pair of time-reversible models defined on the discrete space-time lattice with 3 states per site, specifically, a vacancy and a particle of two flavours (species). The local update rules reproduce the rule 54 reversible cellular automaton when only a single species of particles is present, and satisfy the requirements of flavour exchange (C), space-reversal (P), and time-reversal (T) symmetries. We find closed-form expressions for three local conserved charges and provide an explicit matrix product form of the grand canonical Gibbs states, which are identical for both models. For one of the models this family of Gibbs states seems to be a complete characterisation of equilibrium (i.e. space and time translation invariant) states, while for the other model we empirically find a sequence of local conserved charges, one for each support size larger than 2, hinting to its algebraic integrability. Finally, we numerically investigate the behaviour of spatio-temporal correlation functions of charge densities, and test the hydrodynamic prediction for the model with exactly three local charges. Surprisingly, the numerically observed 'sound velocity' does not match the hydrodynamic value. The deviations are either significant, or they decay extremely slowly with the simulation time, which leaves us with an open question for the mechanism of such a glassy behaviour in a deterministic locally interacting system.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sabrina Pasterski ◽  
Andrea Puhm ◽  
Emilio Trevisani

Abstract Celestial diamonds encode the structure of global conformal multiplets in 2D celestial CFT and offer a natural language for describing the conformally soft sector. The operators appearing at their left and right corners give rise to conformally soft factorization theorems, the bottom corners correspond to conserved charges, and the top corners to conformal dressings. We show that conformally soft charges can be expressed in terms of light ray integrals that select modes of the appropriate conformal weights. They reside at the bottom corners of memory diamonds, and ascend to generalized currents. We then identify the top corners of the associated Goldstone diamonds with conformal Faddeev-Kulish dressings and compute the sub-leading conformally soft dressings in gauge theory and gravity which are important for finding nontrivial central extensions. Finally, we combine these ingredients to speculate on 2D effective descriptions for the conformally soft sector of celestial CFT.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
B. Chauhan ◽  
S. Kumar

We derive the off-shell nilpotent of order two and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations for the Christ–Lee (CL) model in one 0 + 1 -dimension (1D) of spacetime by exploiting the (anti-)chiral supervariable approach (ACSA) to BRST formalism where the quantum symmetry (i.e., (anti-)BRST along with (anti-)co-BRST) invariant quantities play a crucial role. We prove the nilpotency and absolute anticommutativity properties of the (anti-)BRST along with (anti-)co-BRST conserved charges within the scope of ACSA to BRST formalism where we take only one Grassmannian variable into account. We also show the (anti-)BRST and (anti-)co-BRST invariances of the Lagrangian within the scope of ACSA.


Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012007
Author(s):  
Francisco Correa ◽  
Olaf Lechtenfeld

Abstract We review some recents developments of the algebraic structures and spectral properties of non-Hermitian deformations of Calogero models. The behavior of such extensions is illustrated by the A 2 trigonometric and the D 3 angular Calogero models. Features like intertwining operators and conserved charges are discussed in terms of Dunkl operators. Hidden symmetries coming from the so-called algebraic integrability for integral values of the coupling are addressed together with a physical regularization of their action on the states by virtue of a PT -symmetry deformation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ibrahima Bah ◽  
Pierre Heidmann

Abstract We construct the first smooth bubbling geometries using the Weyl formalism. The solutions are obtained from Einstein theory coupled to a two-form gauge field in six dimensions with two compact directions. We classify the charged Weyl solutions in this framework. Smooth solutions consist of a chain of Kaluza-Klein bubbles that can be neutral or wrapped by electromagnetic fluxes, and are free of curvature and conical singularities. We discuss how such topological structures are prevented from gravitational collapse without struts. When embedded in type IIB, the class of solutions describes D1-D5-KKm solutions in the non-BPS regime, and the smooth bubbling solutions have the same conserved charges as a static four-dimensional non-extremal Cvetic-Youm black hole.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francisca Carrillo-Morales ◽  
Francisco Correa ◽  
Olaf Lechtenfeld

Abstract For the rational quantum Calogero systems of type A1⊕A2, AD3 and BC3, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra ‘odd’ charges appearing for integral couplings. Formulæ for the energy eigenstates are used to tabulate the low-level wave functions.


Sign in / Sign up

Export Citation Format

Share Document