scholarly journals TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

2013 ◽  
Vol 28 (26) ◽  
pp. 1330038 ◽  
Author(s):  
SHABNAM JABEEN

This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of [Formula: see text], and the Large Hadron Collider, a proton–proton collider at a center-of-mass energy of [Formula: see text]. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

2015 ◽  
Vol 30 (34) ◽  
pp. 1530061 ◽  
Author(s):  
Douglas M. Gingrich

The possibility of producing nonperturbative low-scale gravity states in collider experiments was first discussed in about 1998. The ATLAS and CMS experiments have searched for nonperturbative low-scale gravity states using the Large Hadron Collider with a proton–proton center-of-mass energy of 8 TeV. These experiments have now seriously confronted the possibility of producing nonperturbative low-scale gravity states which were proposed over 17 years ago. I will summarize the results of the searches, give a personal view of what they mean, and make some predictions for 13 TeV center-of-mass energy. I will also discuss early ATLAS 13 TeV center-of-mass energy results.


2009 ◽  
Vol 24 (16n17) ◽  
pp. 2899-3037 ◽  
Author(s):  
MARC-ANDRÉ PLEIER

This review summarizes the program in the physics of the top quark being pursued at Fermilab's Tevatron proton–antiproton collider at a center-of-mass energy of 1.96 TeV. More than a decade after the discovery of the top quark at the two collider detectors CDF and D0, the Tevatron has been the only accelerator to produce top quarks and to study them directly.The Tevatron's increased luminosity and center-of-mass energy offer the possibility to scrutinize the properties of this heaviest fundamental particle through new measurements that were not feasible before, such as the first evidence for electroweak production of top quarks and the resulting direct constraints on the involved couplings. Better measurements of top quark properties provide more stringent tests of predictions from the SM of elementary particle physics. In particular, the improvement in measurements of the mass of the top quark, with the latest uncertainty of 0.7% marking the most precisely measured quark mass to date, further constrains the prediction of the mass of the still to be discovered Higgs boson.


2012 ◽  
Vol 27 (32) ◽  
pp. 1230033 ◽  
Author(s):  
G. REDLINGER

This is a review of searches for supersymmetry (SUSY) with the ATLAS detector in proton–proton collisions at a center-of-mass energy of 7 TeV at the Large Hadron Collider (LHC) at CERN. The review covers results that have been published, or submitted for publication, up to September 2012, many of which cover the full 7 TeV data-taking period. No evidence for SUSY has been seen; some possibilities for future directions are discussed.


2019 ◽  
Vol 34 (18) ◽  
pp. 1950142 ◽  
Author(s):  
Frédéric Déliot ◽  
Miguel C. N. Fiolhais ◽  
António Onofre

The combination of the latest and most precise measurements of several top quark properties is presented in this paper in order to establish allowed regions on anomalous contributions to the Lorentz structure of the Wtb vertex. These measurements include single top production cross-sections, W boson helicity fractions and forward–backward asymmetries, both at Tevatron and at the Large Hadron Collider (LHC), up to a center-of-mass energy of 13 TeV. The results obtained at 95% Confidence Level (CL) for the top quark anomalous couplings are compared with the limits extracted from a combination that includes the expected measurements at the future High-Luminosity run of the LHC.


2005 ◽  
Vol 20 (15) ◽  
pp. 3406-3408
Author(s):  
◽  
Richard Cavanaugh

In 2007, the Large Hadron Collider (LHC) will circulate and collide proton-proton beams at an expected center-of-mass energy of 14 TeV. The Compact Muon Solenoid (CMS) is one of four experiments at the LHC and has been designed with particular attention to selecting and reconstructing muons with high redundancy. This paper briefly describes the CMS Muon System and provides an overview of CMS preparations for new physics searches involving lepton final states during the early phases of running at the LHC.


Sign in / Sign up

Export Citation Format

Share Document