Superintegrability of (2n + 1)-body choreographies, n = 1,2,3,…,∞ on the algebraic lemniscate by Bernoulli (inverse problem of classical mechanics)
For one 3-body and two 5-body planar choreographies on the same algebraic lemniscate by Bernoulli we found explicitly a maximal possible set of (particular) Liouville integrals, 7 and 15, respectively, (including the total angular momentum), which Poisson commute with the corresponding Hamiltonian along the trajectory. Thus, these choreographies are particularly maximally superintegrable. It is conjectured that the total number of (particular) Liouville integrals is maximal possible for any odd number of bodies [Formula: see text] moving choreographically (without collisions) along given algebraic lemniscate, thus, the corresponding trajectory is particularly, maximally superintegrable. Some of these Liouville integrals are presented explicitly. The limit [Formula: see text] is studied: it is predicted that one-dimensional liquid with nearest-neighbor interactions occurs, it moves along algebraic lemniscate and it is characterized by infinitely many constants of motion.