Quantum gravity corrections to tunneling of spin-1/2 fermions from Kerr–Newman Black Hole

Author(s):  
Aheibam Keshwarjit Singh ◽  
Irom Ablu Meitei ◽  
Telem Ibungochouba Singh ◽  
Kangujam Yugindro Singh

In this paper, we solve the Dirac Equation in curved space–time, modified by the generalized uncertainty principle, in the presence of an electromagnetic field. Using this, we study the tunneling of [Formula: see text]-spin fermions from Kerr–Newman black hole. Corrections to the Hawking temperature and entropy of the black hole due to quantum gravity effects are also discussed.

2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2015 ◽  
Vol 30 (05) ◽  
pp. 1550016
Author(s):  
Guoping Li ◽  
Tianhu Cheng ◽  
Zhang Li ◽  
Zhongwen Feng ◽  
Xiaotao Zu

Adopting the Hamilton–Jacobi method, we investigated the tunneling radiation of a deform Hořava–Lifshitz black hole, and the original tunneling rate and Hawking temperature are obtained. Based on the generalized uncertainty principle, recent researches imply that the quantum gravity corrected the Dirac equation exactly. Hence, the corrected Dirac equation can express the tunneling behavior of fermions may be more suitable, and meanwhile, the corrected Hawking temperature of the Hořava–Lifshitz black hole is obtained. Comparing with previous results, we find that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we inferred that the Hawking radiation would stop by the reason of the quantum gravity, and the remnant of the black hole exists naturally, also the singularity of the black hole is avoided.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050018
Author(s):  
T. Ibungochouba Singh ◽  
Y. Kenedy Meitei ◽  
I. Ablu Meitei

The Hawking radiation of BTZ black hole is investigated based on generalized uncertainty principle effect by using Hamilton–Jacobi method and Dirac equation. The tunneling probability and the Hawking temperature of the spin-1/2 particles of the BTZ black hole are investigated using the modified Dirac equation based on the GUP. The modified Hawking temperature for fermion crossing the black hole horizon includes the mass parameter of the black hole, angular momentum, energy and also outgoing mass of the emitted particle. Besides, considering the effect of GUP into account, the modified Hawking radiation of massless particle from a BTZ black hole is investigated using Damour and Ruffini method, tortoise coordinate transformation and modified Klein–Gordon equation. The relation between the modified Hawking temperature obtained by using Damour–Ruffini method and the energy of the emitted particle is derived. The original Hawking temperature is also recovered in the absence of quantum gravity effect. There is a possibility of negative Hawking temperature for emission of Dirac particles under quantum gravity effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deyou Chen ◽  
Zhonghua Li

Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850070 ◽  
Author(s):  
I. Ablu Meitei ◽  
T. Ibungochouba Singh ◽  
S. Gayatri Devi ◽  
N. Premeshwari Devi ◽  
K. Yugindro Singh

Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein–Hawking entropy [Formula: see text], the inverse term of [Formula: see text] and terms with inverse powers of [Formula: see text], in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space–time.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Nasrin Farahani ◽  
Hassan Hassanabadi ◽  
Jan Kříž ◽  
Won Sang Chung ◽  
Saber Zarrinkamar

Abstract In this paper, by studying the COW experiment and the Einstein Bohr’s photon box, we investigate the associated modified phase shift and Hawking temperature. Next, we comment on the effective Newton constant suggested by the doubly special relativity based on the generalized uncertainty principle.


2010 ◽  
Vol 19 (12) ◽  
pp. 2003-2009 ◽  
Author(s):  
POURIA PEDRAM

Various candidates of quantum gravity such as string theory, loop quantum gravity and black hole physics all predict the existence of a minimum observable length which modifies the Heisenberg uncertainty principle to the so-called generalized uncertainty principle (GUP). This approach results from the modification of the commutation relations and changes all Hamiltonians in quantum mechanics. In this paper, we present a class of physically acceptable solutions for a general commutation relation without directly solving the corresponding generalized Schrödinger equations. These solutions satisfy the boundary conditions and exhibit the effect of the deformed algebra on the energy spectrum. We show that this procedure prevents us from doing equivalent but lengthy calculations.


Sign in / Sign up

Export Citation Format

Share Document