COLOR-SEXTET QUARK PRODUCTIONS AT HADRON COLLIDERS

1992 ◽  
Vol 07 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
HIDEKAZU TANAKA ◽  
ISAMU WATANABE

Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.

1987 ◽  
Vol 02 (06) ◽  
pp. 397-408 ◽  
Author(s):  
ALAN R. WHITE

Dynamical electroweak symmetry breaking by a chiral condensate of color sextet quarks is expected to produce large cross-sections for W+W− and Z0Z0 pairs due to direct QCD production. Cross-section estimates based on a combination of chiral and diffractive scaling arguments are shown to be consistent with the candidate events observed at CERN. Other implications of sextet quarks for QCD dynamics and for Grand Unification are also briefly described.


2013 ◽  
Vol 28 (18) ◽  
pp. 1330027 ◽  
Author(s):  
EMANUELA BARBERIS

An experimental review of the current status of the top quark physics program at hadron colliders is presented. Since the discovery of the top quark at the Fermilab Tevatron collider in 1995, its production and the decay have been studied with an extraordinary level of sophistication both at the Tevatron and at the Large Hadron Collider. The top quark is the heaviest known elementary particle, with possible unique connections to the mechanism of electroweak symmetry breaking.


2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


2003 ◽  
Vol 663 (1-2) ◽  
pp. 141-162 ◽  
Author(s):  
Riccardo Barbieri ◽  
Lawrence J. Hall ◽  
Guido Marandella ◽  
Yasunori Nomura ◽  
Takemichi Okui ◽  
...  

2006 ◽  
Vol 21 (08n09) ◽  
pp. 1591-1603
Author(s):  
AURELIO JUSTE

Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 899-901 ◽  
Author(s):  
Alfredo Aranda ◽  
Christopher D. Carone

A topcolor model is presented that contains both composite and fundamental scalar fields. Strong dynamics accounts for most of the top quark mass and part of the electroweak symmetry breaking scale. The fundamental scalar is weakly coupled and transmits its share of electroweak symmetry breaking to the light fermions. The model is allowed by the current experimental bounds, and can give a potentially large contribution to [Formula: see text] mixing.


Sign in / Sign up

Export Citation Format

Share Document