production cross section
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 82)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
G. Aglieri Rinella ◽  
...  

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Paolo Azzurri ◽  
Gregorio Bernardi ◽  
Sylvie Braibant ◽  
David d’Enterria ◽  
Jan Eysermans ◽  
...  

AbstractThe FCC-ee offers powerful opportunities to determine the Higgs boson parameters, exploiting over $$10^6$$ 10 6 $${ \hbox {e}^+\hbox {e}^- \rightarrow \hbox {ZH}}$$ e + e - → ZH events and almost $$10^5$$ 10 5 $${ \hbox {WW} \rightarrow \hbox {H}}$$ WW → H events at centre-of-mass energies around 240 and 365 GeV. This essay spotlights the important measurements of the ZH production cross section and of the Higgs boson mass. The measurement of the total ZH cross section is an essential input to the absolute determination of the HZZ coupling—a “standard candle” that can be used by all other measurements, including those made at hadron colliders—at the per-mil level. A combination of the measured cross sections at the two different centre-of-mass energies further provides the first evidence for the trilinear Higgs self-coupling, and possibly its first observation if the cross section measurement can be made accurate enough. The determination of the Higgs boson mass with a precision significantly better than the Higgs boson width (4.1 MeV in the standard model) is a prerequisite to either constrain or measure the electron Yukawa coupling via direct $${ \hbox {e}^+\hbox {e}^- \rightarrow \hbox {H}}$$ e + e - → H production at $$\sqrt{s} = 125$$ s = 125  GeV. Approaching the statistical limit of 0.1% and $${\mathcal {O}}(1)$$ O ( 1 )  MeV on the ZH cross section and the Higgs boson mass, respectively, sets highly demanding requirements on accelerator operation (ZH threshold scan, centre-of-mass energy measurement), detector design (lepton momentum resolution, hadronic final state reconstruction performance), theoretical calculations, and analysis techniques (efficiency and purity optimization with modern tools, constrained kinematic fits, control of systematic uncertainties). These challenges are examined in turn in this essay


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
G. Aglieri Rinella ◽  
M. Agnello ◽  
...  

AbstractWe report on the inclusive $$\text {J}/\psi $$ J / ψ production cross section measured at the CERN Large Hadron Collider in proton–proton collisions at a center-of-mass energy $$\sqrt{s}~=~13$$ s = 13  TeV. The $$\text {J}/\psi $$ J / ψ mesons are reconstructed in the $$\text {e}^{+}\text {e}^{-}$$ e + e - decay channel and the measurements are performed at midrapidity ($$|y|<0.9$$ | y | < 0.9 ) in the transverse-momentum interval $$0<p_{\mathrm{T}} <40$$ 0 < p T < 40  GeV/$$c$$ c , using a minimum-bias data sample corresponding to an integrated luminosity $$L_{\text {int}} = 32.2~\text {nb}^{-1}$$ L int = 32.2 nb - 1 and an Electromagnetic Calorimeter triggered data sample with $$L_{\text {int}} = 8.3~\mathrm {pb}^{-1}$$ L int = 8.3 pb - 1 . The $$p_{\mathrm{T}}$$ p T -integrated $$\text {J}/\psi $$ J / ψ production cross section at midrapidity, computed using the minimum-bias data sample, is $$\text {d}\sigma /\text {d}y|_{y=0} = 8.97\pm 0.24~(\text {stat})\pm 0.48~(\text {syst})\pm 0.15~(\text {lumi})~\mu \text {b}$$ d σ / d y | y = 0 = 8.97 ± 0.24 ( stat ) ± 0.48 ( syst ) ± 0.15 ( lumi ) μ b . An approximate logarithmic dependence with the collision energy is suggested by these results and available world data, in agreement with model predictions. The integrated and $$p_{\mathrm{T}}$$ p T -differential measurements are compared with measurements in pp collisions at lower energies and with several recent phenomenological calculations based on the non-relativistic QCD and Color Evaporation models.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

Abstract A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of 125 GeV and another Higgs boson hS is presented. The h and hS bosons are required to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Mass ranges of 240–3000 GeV for mH and 60–2800 GeV for $$ {m}_{{\mathrm{h}}_{\mathrm{S}}} $$ m h S are explored in the search. No signal has been observed. Model independent 95% confidence level upper limits on the product of the production cross section and the branching fractions of the signal process are set with a sensitivity ranging from 125 fb (for mH = 240 GeV) to 2.7 fb (for mH = 1000 GeV). These limits are compared to maximally allowed products of the production cross section and the branching fractions of the signal process in the next-to-minimal supersymmetric extension of the standard model.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be $$ {26}_{-15}^{+17} $$ 26 − 15 + 17 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be $$ {24}_{-6}^{+7} $$ 24 − 6 + 7 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb.


Sign in / Sign up

Export Citation Format

Share Document