scholarly journals APPLICATIONS OF DENSITY MATRICES IN A TRAPPED BOSE GAS

2006 ◽  
Vol 20 (15) ◽  
pp. 2189-2221 ◽  
Author(s):  
K. CH. CHATZISAVVAS ◽  
S. E. MASSEN ◽  
CH. C. MOUSTAKIDIS ◽  
C. P. PANOS

An overview of the Bose–Einstein condensation of correlated atoms in a trap is presented by examining the effect of interparticle correlations to one- and two-body properties of the above systems at zero temperature in the framework of the lowest order cluster expansion. Analytical expressions for the one- and two-body properties of the Bose gas are derived using Jastrow-type correlation function. In addition numerical calculations of the natural orbitals and natural occupation numbers are also carried out. Special effort is devoted for the calculation of various quantum information properties including Shannon entropy, Onicescu informational energy, Kullback–Leibler relative entropy and the recently proposed Jensen–Shannon divergence entropy. The above quantities are calculated for the trapped Bose gases by comparing the correlated and uncorrelated cases as a function of the strength of the short-range correlations. The Gross–Piatevskii equation is solved, giving the density distributions in position and momentum space, which are employed to calculate quantum information properties of the Bose gas.

2019 ◽  
Vol 11 ◽  
Author(s):  
Ch. C. Moustakidis ◽  
S. E. Massen

The Bose-Einstein condensation of correlated atoms in a trap is studied by examining the effect of inter-particle correlations to one-body properties of atomic systems at zero temperature using a simplified formula for the correlated two body density distribution. Analytical expressions for the density distribution and rms radius of the atomic systems are derived using four different expressions of Jastrow type correlation function. In one case, in addition, the one-body density matrix, momentum distribution and kinetic energy are calculated analytically, while the natural orbitals and natural occupation numbers are also predicted in this case. Simple approximate expressions for the mean square radius and kinetic energy are also given.


2019 ◽  
Vol 14 ◽  
pp. 191
Author(s):  
K. Ch. Chatzisavvas ◽  
Ch. C. Moustakidis ◽  
C. P. Panos

The universal property for the information entropy S = a + h In Ζ is verified for atoms using a systematic study with Roothaan-Hartree-Fock (RHF) wave functions with atomic number Ζ — 2 — 54. The above relation was proposed previously for atoms, nuclei, atomic clusters and correlated atoms in a trap. Kullback-Leibler relative entropy Κ and Jensen-Shannon divergence J are employed to compare RHF with Thomas-Fermi (TF) density of atoms as well as another phenomenological density obtained by Sagar et al. Two-body density distributions in position- and momentum-space are used to calculate and compare the corresponding information entropies for correlated and uncorrelated nuclei and bosonic systems (correlated atoms in a trap). It is seen that short-range correlations (SRC) increase the values of S. One-body information entropy entropy S\ is compared with two-body information entropy and a conjecture is made for TV-body information entropy SN- The entropy Κ and the divergence J are also used to evaluate the information distance between correlated and uncorrelated densities both at the one- and the two-body levels for nuclei and trapped Bose gases.


1995 ◽  
Vol 50 (10) ◽  
pp. 921-930 ◽  
Author(s):  
Siegfried Grossmann ◽  
Martin Holthaus

Abstract We study Bose-Einstein condensation of comparatively small numbers of atoms trapped by a three-dimensional harmonic oscillator potential. Under the assumption that grand canonical statis­tics applies, we derive analytical expressions for the condensation temperature, the ground state occupation, and the specific heat capacity. For a gas of TV atoms the condensation temperature is proportional to N1/3, apart from a downward shift of order N-1/3. A signature of the condensation is a pronounced peak of the heat capacity. For not too small N the heat capacity is nearly discon­tinuous at the onset of condensation; the magnitude of the jump is about 6.6 N k. Our continuum approximations are derived with the help of the proper density of states which allows us to calculate finite-AT-corrections, and checked against numerical computations.


2006 ◽  
Vol 20 (30n31) ◽  
pp. 5081-5092 ◽  
Author(s):  
L. REATTO ◽  
M. ROSSI ◽  
D. E. GALLI

We address the question if the ground state of solid 4 He has the number of lattice sites equal to the number of atoms (commensurate state) or if it is different (incommensurate state). We point out that energy computation from simulation as performed by now cannot be used to decide this question and that the presently best variational wave function, a shadow wave function, gives an incommensurate state. We have extended the calculation of the one–body density matrix ρ1 to the exact Shadow Path Integral Ground State method. Calculation of ρ1 at ρ = 0.031 Å-3 shows that Vacancy–Interstitial pair processes are present also in the exact computation but the simulated system size is too small to infer the presence of off–diagonal long range order. Variational simulations of 4 He confined in a narrow cylindrical pore are also discussed.


2020 ◽  
Vol 35 (03) ◽  
pp. 2040005 ◽  
Author(s):  
M. Bordag

We investigate Bose-Einstein condensation of a gas of non-interacting Bose particles moving in the background of a periodic lattice of delta functions. In the one-dimensional case, where one has no condensation in the free case, we showed that this property persist also in the presence of the lattice. In addition we formulated some conditions on the spectral functions which would allow for condensation.


Sign in / Sign up

Export Citation Format

Share Document