INFLUENCE OF NEARBY QD LAYER ON 2DES IN QUANTUM HALL REGIME

2007 ◽  
Vol 21 (08n09) ◽  
pp. 1445-1449
Author(s):  
K. TAKEHANA ◽  
Y. IMANAKA ◽  
T. TAKAMASU ◽  
M. HENINI

We have investigated transport properties in high magnetic field of a gated two-dimensional electron system (2DES) separated by a thin barrier from a layer of self-assembled InAs quantum dots (QDs) in the quantum Hall regime. The quality of 2DES was found to be high enough to observe both integer and fractional quantum Hall effect (QHE), despite the proximity of the QD layer to the 2DES. However, significant suppression of the magnetoresistance (ρ xx ) and Hall resistance (ρ xy ) were observed in higher magnetic field range of filling factor ν < 1 when a positive voltage was applied to the front gate. The gate voltage dependence of ρ xx and ρ xy shows a well-defined hysteresis loop at the narrow gate voltage range between -0.2 and +0.2 V at ν < 1, while no anomaly was observed at ν > 1. We deduce that charging and discharging of QDs occurs when the gate voltage is varied around Vg ~ 0 V, which indicates that the electron charge states of the QDs affect the transport properties of the nearby 2DES only at ν < 1. We infer that the spin-flip process induces a non-equilibrium state in the 2DEG, which causes the suppression of ρ xx and ρ xy .

1987 ◽  
Vol 62 (2) ◽  
pp. 89-91 ◽  
Author(s):  
D. Weiss ◽  
V. Mosser ◽  
V. Gudmundsson ◽  
R.R. Gerhardts ◽  
K.v. Klitzing

SPIN ◽  
2015 ◽  
Vol 05 (03) ◽  
pp. 1530003
Author(s):  
R. Cangas ◽  
M. A. Hidalgo

In this paper, we review the contribution of the Rashba spin–orbit coupling to the magnetoconduction of a two-dimensional electron system (2DES) confined in an inversion layer under quantum Hall regime (low temperature and low defects and impurities). The study is based on a semi-classical model for the magnetoconductivities of the 2DES. This model reproduces the measurements of the Shubnikov-de Haas (SdH) oscillations obtained in systems confined in III–V heterostructures, and also the quantum Hall magnetoconductivity (magnetoresistivity). We also discuss the Rashba and Zeeman competition and its effect on the magnetoconductivity.


1996 ◽  
Vol 46 (S5) ◽  
pp. 2459-2460 ◽  
Author(s):  
A. M. C. Valkering ◽  
P. K. H. Sommerfeld ◽  
R. A. M. van de Ven ◽  
R. W. van der Heijden ◽  
F. A. P. Blom

2009 ◽  
Vol 23 (12n13) ◽  
pp. 2618-2627 ◽  
Author(s):  
ANA L. C. PEREIRA ◽  
PETER A. SCHULZ

We investigate the effects of vacancies, disorder and sublattice polarization on the electronic properties of a monolayer graphene in the quantum Hall regime. Energy spectra as a function of magnetic field and the localization properties of the states within the graphene Landau levels (LLs) are calculated through a tight-binding model. We first discuss our results considering vacancies in the lattice, where we show that vacancies introduce extra levels (or well-defined bands) between consecutive LLs. An striking consequence here is that extra Hall resistance plateaus are expected to emerge when an organized vacancy superlattice is considered. Secondly, we discuss the anomalous localization properties we have found for the lowest LL, where an increasing disorder is shown to enhance the wave functions delocalization (instead of inducing localization). This unexpected effect is shown to be directly related to the way disorder increasingly destroys the sublattice (valley) polarization of the states in the lowest LL. The reason why this anomalous disorder effect occurs only for the zero-energy LL is that, in absence of disorder, only for this level all the states are sublattice polarized, i.e., their wave functions have amplitudes in only one of the sublattices.


Sign in / Sign up

Export Citation Format

Share Document