Active semisupervised community detection based on asymmetric similarity measure

2015 ◽  
Vol 29 (13) ◽  
pp. 1550078 ◽  
Author(s):  
Mingwei Leng ◽  
Liang Huang ◽  
Longjie Li ◽  
Hanhai Zhou ◽  
Jianjun Cheng ◽  
...  

Semisupervised community detection algorithms use prior knowledge to improve the performance of discovering the community structure of a complex network. However, getting those prior knowledge is quite expensive and time consuming in many real-world applications. This paper proposes an active semisupervised community detection algorithm based on the similarities between nodes. First, it transforms a given complex network into a weighted directed network based on the proposed asymmetric similarity method, some informative nodes are selected to be the labeled nodes by using an active mechanism. Second, the proposed algorithm discovers the community structure of a complex network by propagating the community labels of labeled nodes to their neighbors based on the similarity between a node and a community. Finally, the performance of the proposed algorithm is evaluated with three real networks and one synthetic network and the experimental results show that the proposed method has a better performance compared with some other community detection algorithms.

2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


2020 ◽  
Vol 13 (4) ◽  
pp. 542-549
Author(s):  
Smita Agrawal ◽  
Atul Patel

Many real-world social networks exist in the form of a complex network, which includes very large scale networks with structured or unstructured data and a set of graphs. This complex network is available in the form of brain graph, protein structure, food web, transportation system, World Wide Web, and these networks are sparsely connected, and most of the subgraphs are densely connected. Due to the scaling of large scale graphs, efficient way for graph generation, complexity, the dynamic nature of graphs, and community detection are challenging tasks. From large scale graph to find the densely connected subgraph from the complex network, various community detection algorithms using clustering techniques are discussed here. In this paper, we discussed the taxonomy of various community detection algorithms like Structural Clustering Algorithm for Networks (SCAN), Structural-Attribute based Cluster (SA-cluster), Community Detection based on Hierarchical Clustering (CDHC), etc. In this comprehensive review, we provide a classification of community detection algorithm based on their approach, dataset used for the existing algorithm for experimental study and measure to evaluate them. In the end, insights into the future scope and research opportunities for community detection are discussed.


2013 ◽  
Vol 462-463 ◽  
pp. 458-461
Author(s):  
Jian Jun Cheng ◽  
Peng Fei Wang ◽  
Qi Bin Zhang ◽  
Zheng Quan Zhang ◽  
Ming Wei Leng ◽  
...  

This paper proposes an algorithm called DDSCDA, which is based on the concepts of the node degree difference and the node similarity. In the algorithm, we iteratively extract the node from the network with larger degree and certified the node as a kernel node, then take the kernel node as the founder or initiator of a community to attract its neighbors to join in that community; by doing so, we obtain a partition corresponding to a coarse-grained community structure of the network. Finally taken the coarse-grained community as a starting point, we use the strategy of LPA to propagate labels through the network further. At the end of the algorithm, we obtain the final community structure. We compared the performance with classical community detection algorithms such as LPA, LPAm, FastQ, etc., the experimental results have manifested that our proposal is a feasible algorithm, can extract higher quality communities from the network, and outperforms the previous algorithms significantly.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950076 ◽  
Author(s):  
Wenjie Zhou ◽  
Xingyuan Wang ◽  
Chuan Zhang ◽  
Rui Li ◽  
Chunpeng Wang

Community detection is one of the primary tools to discover useful information that is hidden in complex networks. Some community detection algorithms for bipartite networks have been proposed from various viewpoints. However, the performance of these algorithms deteriorates when the community structure becomes unclear. Enhancing community structure remains a nontrivial task. In this paper, we propose a community detection algorithm, called ECD, that enhances community structure in bipartite networks. In the proposed ECD, the topology of a network is modified by reducing unnecessary edges that are connected to neighboring low-weight communities. Therefore, an ambiguous community structure is converted into a structure that is much clearer than the original structure. The experimental results on both artificial and real-world networks verify the accuracy and reliability of our algorithm. Compared with existing community detection algorithms using state-of-the-art methods, our algorithm has better performance.


2018 ◽  
Vol 29 (07) ◽  
pp. 1850060
Author(s):  
Jin Lei ◽  
Wang Xiao Juan ◽  
Zhang Yong

Community detection is significative in the complex network. This paper focuses on community detection based on clustering algorithms. We tend to find out the central nodes of the communities by centrality algorithms. Firstly, we define the distance between nodes using similarity. Then, a new centrality measuring the local density of nodes is put forward. Combining the independence of the centrality, the nodes in the network can be divided into four classes. Leveraging the product of centrality and independence, the central nodes in the network are easily identified. We also find that we can distinguish bridge nodes from central nodes using centrality and independence. This research designs a community detection algorithm combining centrality and independence. Simulation results reveal that our centrality is more effective than existing centralities in measuring local density and identifying community centers. Compared with other community detection algorithms, results prove the effectiveness of our algorithm. This paper just shows one application of independence of the centrality. There may be more useful applications of it.


Author(s):  
Xiao Li Huang ◽  
Si Yu Hu ◽  
Jing Xian Chen ◽  
Wan Qi Feng

The air quality is directly related to people’s lives. This paper selects air quality data of Sichuan Province as the research object, and explores the inherent characteristics of air quality from the perspective of complex network theory. First, based on the complexity of network topology and nodes, a community detection algorithm which combines the clustering idea with principal component analysis (PCA) algorithm and self-organization competitive neural network (SOM) is designed (CSP). Compared with the classic community detection algorithm, the result proves that the CSP algorithm can accurately dig out a better community structure. Second, based on the strong correlation distance and strong correlation coefficient of the air quality network, the Sichuan Air Quality Complex Network (SCCN) was constructed. The SCCN is divided into five communities using the CSP algorithm. Combining the characteristics of each community and the Hurst coefficient, it is found that the air quality inside the community has long-term memory. Finally, based on the idea of time-dependent cross-correlation, this paper analyzes the cross-correlation of AQI time series of different stations in each community, constructs a directed air quality cross-correlation network combined with complex network theory, and locates the important pollution sources in each region of Sichuan Province according to the topological structure of the network. The work of this paper can provide the corresponding theoretical support and guidance for the current environmental pollution control.


2021 ◽  
Author(s):  
Oksana Vertsimakha ◽  
Igor Dzeverin

AbstractModularity and modular structures can be recognized at various levels of biological organization and in various domains of studies. Recently, algorithms based on network analysis came into focus. And while such a framework is a powerful tool in studying modular structure, those methods usually pose a problem of assessing statistical support for the obtained modular structures. One of the widely applied methods is the leading eigenvector, or Newman’s spectral community detection algorithm. We conduct a brief overview of the method, including a comparison with some other community detection algorithms and explore a possible fine-tuning procedure. Finally, we propose an adapted bootstrap-based procedure based on Shimodaira’s multiscale bootstrap algorithm to derive approximately unbiased p-values for the module partitions of observations datasets. The proposed procedure also gives a lot of freedom to the researcher in constructing the network construction from the raw numeric data, and can be applied to various types of data and used in diverse problems concerning modular structure. We provide an R language code for all the calculations and the visualization of the obtained results for the researchers interested in using the procedure.


2020 ◽  
pp. 2150036
Author(s):  
Jinfang Sheng ◽  
Qiong Li ◽  
Bin Wang ◽  
Wanghao Guan ◽  
Jinying Dai ◽  
...  

Social networks are made up of members in society and the social relationships established by the interaction between members. Community structure is an essential attribute of social networks. The question arises that how can we discover the community structure in the network to gain a deep understanding of its underlying structure and mine information from it? In this paper, we introduce a novel community detection algorithm NTCD (Community Detection based on Node Trust). This is a stable community detection algorithm that does not require any parameters settings and has nearly linear time complexity. NTCD determines the community ownership of a node by studying the relationship between the node and its neighbor communities. This relationship is called Node Trust, representing the possibility that the node is in the current community. Node Trust is also a quality function, which is used for community detection by seeking maximum. Experiments on real and synthetic networks show that our algorithm has high accuracy in most data sets and stable community division results. Additionally, through experiments on different types of synthetic networks, we can conclude that our algorithm has good robustness.


2020 ◽  
Vol 34 (35) ◽  
pp. 2050408
Author(s):  
Sumit Gupta ◽  
Dhirendra Pratap Singh

In today’s world scenario, many of the real-life problems and application data can be represented with the help of the graphs. Nowadays technology grows day by day at a very fast rate; applications generate a vast amount of valuable data, due to which the size of their representation graphs is increased. How to get meaningful information from these data become a hot research topic. Methodical algorithms are required to extract useful information from these raw data. These unstructured graphs are not scattered in nature, but these show some relationships between their basic entities. Identifying communities based on these relationships improves the understanding of the applications represented by graphs. Community detection algorithms are one of the solutions which divide the graph into small size clusters where nodes are densely connected within the cluster and sparsely connected across. During the last decade, there are lots of algorithms proposed which can be categorized into mainly two broad categories; non-overlapping and overlapping community detection algorithm. The goal of this paper is to offer a comparative analysis of the various community detection algorithms. We bring together all the state of art community detection algorithms related to these two classes into a single article with their accessible benchmark data sets. Finally, we represent a comparison of these algorithms concerning two parameters: one is time efficiency, and the other is how accurately the communities are detected.


2014 ◽  
Vol 599-601 ◽  
pp. 1369-1373
Author(s):  
Huang Bin You ◽  
Xue Wu Zhang ◽  
Huai Yong Fu ◽  
Zhuo Zhang ◽  
Min Li ◽  
...  

The community structure is a vital property of complex networks. As special networks the weighted networks also have community structure. Nowadays the studies of overlapping community draw attentions of researchers. However, the scale of networks become huge, so it requires the algorithm has lower time complexity and higher classification accuracy. Many existing algorithms cannot meet these two requirements at the same time. So we propose a novel overlapping community detection algorithm. Firstly we apply maximum degree node and its some special adjacent nodes as the initial community, and then expand the initial community by adding eligible nodes to it, finally other communities can be found by repeating these two steps. Experiments results show that our algorithm can detect overlapping community structure from weighted networks successfully, and also reveal that our method has higher division accuracy and lower time complexity than many previously proposed methods.


Sign in / Sign up

Export Citation Format

Share Document