community detection algorithm
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 173)

H-INDEX

16
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Robert JM Hermosillo ◽  
Lucille A Moore ◽  
Eric J Feczko ◽  
Adam R Pines ◽  
Ally Dworetsky ◽  
...  

The brain is organized into a broad set of functional neural networks. These networks and their various characteristics have been described and scrutinized through in vivo resting state functional magnetic resonance imaging (rs-fMRI). While the basic properties of networks are generally similar between healthy individuals, there is vast variability in the precise topography across the population. These individual differences are often lost in population studies due to population averaging which assumes topographical uniformity. We leveraged precision brain mapping methods to establish a new open-source, method-flexible set of probabilistic functional network atlases: the Masonic Institute for the Developing Brain (MIDB) Precision Atlas. Using participants from the Adolescent Brain Cognitive Development (ABCD) study, single subject precision maps were generated with two supervised network-matching procedures (template matching and non-negative matrix factorization), as well as an unsupervised community detection algorithm (Infomap). We demonstrate that probabilistic network maps generated for two demographically-matched groups of n~3000 each were nearly identical, both between groups (Pearson r >0.999) and between methods (r=0.96), revealing both regions of high invariance and high variability. Compared to using parcellations based on groups averages, the MIDB Precision Atlases allowed us to derive a set of brain regions that are largely invariant in network topography and provide more reproducible statistical maps of executive function brain-wide associations. We explore an example use case for probabilistic maps, highlighting their potential for use in targeted neuromodulation. The MIDB Precision Atlas is expandable to alternative datasets and methods and is provided open-source with an online web interface to encourage the scientific community to experiment with probabilistic atlases and individual-specific topographies to more precisely relate network phenomenon to functional organization of the human brain.


Author(s):  
Christian Toth ◽  
Denis Helic ◽  
Bernhard C. Geiger

AbstractComplex systems, abstractly represented as networks, are ubiquitous in everyday life. Analyzing and understanding these systems requires, among others, tools for community detection. As no single best community detection algorithm can exist, robustness across a wide variety of problem settings is desirable. In this work, we present Synwalk, a random walk-based community detection method. Synwalk builds upon a solid theoretical basis and detects communities by synthesizing the random walk induced by the given network from a class of candidate random walks. We thoroughly validate the effectiveness of our approach on synthetic and empirical networks, respectively, and compare Synwalk’s performance with the performance of Infomap and Walktrap (also random walk-based), Louvain (based on modularity maximization) and stochastic block model inference. Our results indicate that Synwalk performs robustly on networks with varying mixing parameters and degree distributions. We outperform Infomap on networks with high mixing parameter, and Infomap and Walktrap on networks with many small communities and low average degree. Our work has a potential to inspire further development of community detection via synthesis of random walks and we provide concrete ideas for future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ping Wang ◽  
Yonghong Huang ◽  
Fei Tang ◽  
Hongtao Liu ◽  
Yangyang Lu

Detecting the community structure and predicting the change of community structure is an important research topic in social network research. Focusing on the importance of nodes and the importance of their neighbors and the adjacency information, this article proposes a new evaluation method of node importance. The proposed overlapping community detection algorithm (ILE) uses the random walk to select the initial community and adopts the adaptive function to expand the community. It finally optimizes the community to obtain the overlapping community. For the overlapping communities, this article analyzes the evolution of networks at different times according to the stability and differences of social networks. Seven common community evolution events are obtained. The experimental results show that our algorithm is feasible and capable of discovering overlapping communities in complex social network efficiently.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jianjun Cheng ◽  
Xu Wang ◽  
Wenshuang Gong ◽  
Jun Li ◽  
Nuo Chen ◽  
...  

Community detection is one of the key research directions in complex network studies. We propose a community detection algorithm based on a density peak clustering model and multiple attribute decision-making strategy, TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution). First, the two-dimensional dataset, which is transformed from the network by taking the density and distance as the attributes of nodes, is clustered by using the DBSCAN algorithm, and outliers are determined and taken as the key nodes. Then, the initial community frameworks are formed and expanded by adding the most similar node of the community as its new member. In this process, we use TOPSIS to cohesively integrate four kinds of similarities to calculate an index, and use it as a criterion to select the most similar node. Then, we allocate the nonkey nodes that are not covered in the expanded communities. Finally, some communities are merged to obtain a stable partition in two ways. This paper designs some experiments for the algorithm on some real networks and some synthetic networks, and the proposed method is compared with some popular algorithms. The experimental results testify for the effectiveness and show the accuracy of our algorithm.


Author(s):  
Abraham Resler ◽  
Reuven Yeshurun ◽  
Filipe Natalio ◽  
Raja Giryes

AbstractDeep learning is a powerful tool for exploring large datasets and discovering new patterns. This work presents an account of a metric learning-based deep convolutional neural network (CNN) applied to an archaeological dataset. The proposed account speaks of three stages: training, testing/validating, and community detection. Several thousand artefact images, ranging from the Lower Palaeolithic period (1.4 million years ago) to the Late Islamic period (fourteenth century AD), were used to train the model (i.e., the CNN), to discern artefacts by site and period. After training, it attained a comparable accuracy to archaeologists in various periods. In order to test the model, it was called to identify new query images according to similarities with known (training) images. Validation blinding experiments showed that while archaeologists performed as well as the model within their field of expertise, they fell behind concerning other periods. Lastly, a community detection algorithm based on the confusion matrix data was used to discern affiliations across sites. A case-study on Levantine Natufian artefacts demonstrated the algorithm’s capacity to discern meaningful connections. As such, the model has the potential to reveal yet unknown patterns in archaeological data.


2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jicun Zhang ◽  
Jiyou Fei ◽  
Xueping Song ◽  
Jiawei Feng

Social network analysis has important research significance in sociology, business analysis, public security, and other fields. The traditional Louvain algorithm is a fast community detection algorithm with reliable results. The scale of complex networks is expanding larger all the time, and the efficiency of the Louvain algorithm will become lower. To improve the detection efficiency of large-scale networks, an improved Fast Louvain algorithm is proposed. The algorithm optimizes the iterative logic from the cyclic iteration to dynamic iteration, which speeds up the convergence speed and splits the local tree structure in the network. The split network is divided iteratively, then the tree structure is added to the partition results, and the results are optimized to reduce the computation. It has higher community aggregation, and the effect of community detection is improved. Through the experimental test of several groups of data, the Fast Louvain algorithm is superior to the traditional Louvain algorithm in partition effect and operation efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanjia Tian ◽  
Xiang Feng

With the explosive development of big data, information data mining technology has also been developed rapidly, and complex networks have become a hot research direction in data mining. In real life, many complex systems will use network nodes for intelligent detection. When many community detection algorithms are used, many problems have arisen, so they have to face improvement. The new detection algorithm CS-Cluster proposed in this paper is derived by using the dissimilarity of node proximity. Of course, the new algorithm proposed in this article is based on the IGC-CSM algorithm. It has made certain improvements, and CS-Cluster has been implemented in the four algorithms of IGC-CSM, SA-Cluster, W-Cluster, and S-Cluster. The result of comparing the density value on the entropy value of the Political Blogs data set, the DBLP data set, the Political Blogs data set, and the entropy value of the DBLP data set is shown. Finally, it is concluded that the CS-Cluster algorithm is the best in terms of the effect and quality of clustering, and the degree of difference in the subgraph structure of clustering.


Sign in / Sign up

Export Citation Format

Share Document