Thermodynamic properties of spin-imbalance harmonically trapped one-dimensional attractive 6Li atomic gas
The thermodynamic properties of 6Li atomic gas system, with imbalanced spin populations trapped in one-dimension, were systematically investigated using the Static Fluctuation Approximation. The two-body interaction used is an attractive contact potential. The effects of gas parameter [Formula: see text] and spin polarization [Formula: see text], on the thermodynamic properties and effective magnetic field were investigated. We observed a decrease in [Formula: see text] and an enhancement in [Formula: see text] and [Formula: see text] with increasing [Formula: see text]. At strong interaction and at [Formula: see text], the behavior of entropy with [Formula: see text] indicated two different phases. At small spin polarization [Formula: see text], the system could be in Fulde–Ferrell–Larkin Ovchinnikov (FFLO) state, while above [Formula: see text], the system might be in normal state. In addition, we found a clear decrease in both [Formula: see text] and [Formula: see text] and an enhancement in [Formula: see text] with the increase of the interaction strength. Our results are consistent with the reported results obtained by the mean-field Bogoliubov–de Gennes method, the Bardeen–Cooper–Schrieffer (BCS) approximation and Nozieres–Schmitt–Rink (NSR) theory.