Thermodynamic properties of spin-imbalance harmonically trapped one-dimensional attractive 6Li atomic gas

2021 ◽  
Vol 35 (04) ◽  
pp. 2150059
Author(s):  
H. A. Al-Khzon ◽  
M. K. Al-Sugheir

The thermodynamic properties of 6Li atomic gas system, with imbalanced spin populations trapped in one-dimension, were systematically investigated using the Static Fluctuation Approximation. The two-body interaction used is an attractive contact potential. The effects of gas parameter [Formula: see text] and spin polarization [Formula: see text], on the thermodynamic properties and effective magnetic field were investigated. We observed a decrease in [Formula: see text] and an enhancement in [Formula: see text] and [Formula: see text] with increasing [Formula: see text]. At strong interaction and at [Formula: see text], the behavior of entropy with [Formula: see text] indicated two different phases. At small spin polarization [Formula: see text], the system could be in Fulde–Ferrell–Larkin Ovchinnikov (FFLO) state, while above [Formula: see text], the system might be in normal state. In addition, we found a clear decrease in both [Formula: see text] and [Formula: see text] and an enhancement in [Formula: see text] with the increase of the interaction strength. Our results are consistent with the reported results obtained by the mean-field Bogoliubov–de Gennes method, the Bardeen–Cooper–Schrieffer (BCS) approximation and Nozieres–Schmitt–Rink (NSR) theory.

2010 ◽  
Vol 24 (24) ◽  
pp. 4779-4809 ◽  
Author(s):  
SALEEM I. QASHOU ◽  
MOHAMED K. AL-SUGHEIR ◽  
ASAAD R. SAKHEL ◽  
HUMAM B. GHASSIB

A hard-sphere (HS) Bose gas in a trap is investigated at finite temperatures in the weakly interacting regime and its thermodynamic properties are evaluated using the static fluctuation approximation. The energies are calculated with a second-quantized many-body Hamiltonian and a harmonic oscillator wave function. The specific heat capacity, internal energy, pressure, entropy, and the Bose–Einstein occupation number of the system are determined as functions of temperature and for various values of interaction strength and number of particles. It is found that the number of particles plays a more profound role in the determination of the thermodynamic properties of the system than the HS diameter characterizing the interaction, that the critical temperature drops with the increase of the repulsion between the bosons, and that the fluctuations in the energy are much smaller than the energy itself in the weakly interacting regime.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jason Hindes ◽  
Victoria Edwards ◽  
Klimka Szwaykowska Kasraie ◽  
George Stantchev ◽  
Ira B. Schwartz

AbstractUnderstanding swarm pattern formation is of great interest because it occurs naturally in many physical and biological systems, and has artificial applications in robotics. In both natural and engineered swarms, agent communication is typically local and sparse. This is because, over a limited sensing or communication range, the number of interactions an agent has is much smaller than the total possible number. A central question for self-organizing swarms interacting through sparse networks is whether or not collective motion states can emerge where all agents have coherent and stable dynamics. In this work we introduce the phenomenon of swarm shedding in which weakly-connected agents are ejected from stable milling patterns in self-propelled swarming networks with finite-range interactions. We show that swarm shedding can be localized around a few agents, or delocalized, and entail a simultaneous ejection of all agents in a network. Despite the complexity of milling motion in complex networks, we successfully build mean-field theory that accurately predicts both milling state dynamics and shedding transitions. The latter are described in terms of saddle-node bifurcations that depend on the range of communication, the inter-agent interaction strength, and the network topology.


Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


2006 ◽  
Vol 73 (14) ◽  
Author(s):  
L. Wang ◽  
T. Y. Chen ◽  
C. L. Chien ◽  
J. G. Checkelsky ◽  
J. C. Eckert ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1871 ◽  
Author(s):  
Angelo Maiorino ◽  
Manuel Gesù Del Duca ◽  
Jaka Tušek ◽  
Urban Tomc ◽  
Andrej Kitanovski ◽  
...  

The thermodynamic characterisation of magnetocaloric materials is an essential task when evaluating the performance of a cooling process based on the magnetocaloric effect and its application in a magnetic refrigeration cycle. Several methods for the characterisation of magnetocaloric materials and their thermodynamic properties are available in the literature. These can be generally divided into theoretical and experimental methods. The experimental methods can be further divided into direct and indirect methods. In this paper, a new procedure based on an artificial neural network to predict the thermodynamic properties of magnetocaloric materials is reported. The results show that the procedure provides highly accurate predictions of both the isothermal entropy and the adiabatic temperature change for two different groups of magnetocaloric materials that were used to validate the procedure. In comparison with the commonly used techniques, such as the mean field theory or the interpolation of experimental data, this procedure provides highly accurate, time-effective predictions with the input of a small amount of experimental data. Furthermore, this procedure opens up the possibility to speed up the characterisation of new magnetocaloric materials by reducing the time required for experiments.


2012 ◽  
Vol 26 (26) ◽  
pp. 1250152 ◽  
Author(s):  
BERNA GÜLVEREN

The Thomas–Fermi (TF) equation is solved numerically for an electron gas system that interacts via the Coulomb potential. An emphasis is placed on how certain physical properties, such as the chemical potential and the total energy, change with the shape of the confinement at finite temperatures. By comparing these results with the results calculated for the noninteracting case, we are able to analyze how the inter-particle forces affect the thermodynamic properties of electrons. It is shown that the total energy and other properties of an electron gas is very sensitive to the particle interactions and the shape of the confining potential, even at high temperatures. The results are also applicable to nanostructures like two-dimensional quantum dot systems, wires.


Sign in / Sign up

Export Citation Format

Share Document