SINGLE-PARTICLE AND OPTICAL EXCITATIONS IN DOPED MOTT- HUBBARD INSULATORS
Recent numerical results for the single-particle spectral function and optical conductivity of the two-dimensional Hubbard and t−J models are reviewed. Already for two holes in systems of sixteen to twenty sites (≥ 10% doping) a large electronic Fermi surface, compatible with Luttinger’s theorem, is observed. The full single-particle Green’s function is examined, and is shown to exhibit quasiparticle-like behavior, with dispersion consistent with the band structure of the non-interacting limit, and band width scaling approximately as J for J smaller than t. The optical conductivity of the Hubbard and t−J models is shown to have many features in common with recent experiments on copper oxide superconductors. The importance of the often neglected 3-site terms which arise in the derivation of the t−J model from the Hubbard model for optical properties is discussed.