SYNCHRONIZATION AND GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS

2009 ◽  
Vol 23 (13) ◽  
pp. 1695-1714 ◽  
Author(s):  
XING-YUAN WANG ◽  
JING ZHANG

In this paper, based on the modified state observer method, synchronization and generalized synchronization of a class of fractional order chaotic systems are presented. The two synchronization approaches are theoretically and numerically studied and two simple criterions are proposed. By using the stability theory of linear fractional order systems, suitable conditions for achieving synchronization and generalized synchronization are given. Numerical simulations coincide with the theoretical analysis.

2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


2014 ◽  
Vol 687-691 ◽  
pp. 447-450 ◽  
Author(s):  
Hong Gang Dang ◽  
Wan Sheng He ◽  
Xiao Ya Yang

In this paper, synchronization of a fractional-order delayed system is studied. Based on the stability theory of fractional-order systems, by designing appropriate controllers, the synchronization for the proposed system is achieved. Numerical simulations show the effectiveness of the proposed scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-xin Yang ◽  
Wan-sheng He

This paper investigates the adaptive - synchronization of the fractional-order chaotic systems with nonidentical structures. Based on the stability of fractional-order systems and adaptive control technique, a general formula for designing the controller and parameters update law is proposed to achieve adaptive - synchronization between two different chaotic systems with different structures. The effective scheme parameters identification and - synchronization of chaotic systems can be realized simultaneously. Furthermore, two typical illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme, for each case, we design the controller and parameter update laws in detail. The numerical simulations are performed to verify the effectiveness of the theoretical results.


2013 ◽  
Vol 397-400 ◽  
pp. 1278-1281
Author(s):  
Wei Wei Zhang ◽  
Ding Yuan Chen

In the current paper, a new fractional order hyperchaotic system is discussed. Using the activation feedback control, the synchronization of a new fractional order hyperchaotic system is implemented based on the stability theory of fractional order systems. Numerical simulations are demonstrated the effectiveness.


2013 ◽  
Vol 850-851 ◽  
pp. 876-879
Author(s):  
Hong Gang Dang

In this paper, dynamics and synchronization of the fractional-order Sprott E system are investigated. Firstly, the chaotic attractor of the system is got by means of numerical simulation. Then based on the stability theory of fractional-order systems, the synchronization of the system is realized. Numerical simulations are carried out to demonstrate the effectiveness of the controllers.


2012 ◽  
Vol 26 (30) ◽  
pp. 1250176 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU

Based on the stability theory of fractional order systems and the pole placement technique, this paper designs a synchronization scheme with the state observer method and achieves the projective synchronization of a class of fractional order chaotic systems. Taking an example for the fractional order unified system by using this observer controller, and numerical simulations of fractional order Lorenz-like system, fractional order Lü system and fractional order Chen system are provided to demonstrate the effectiveness of the proposed scheme.


2019 ◽  
Vol 9 (20) ◽  
pp. 4348 ◽  
Author(s):  
Bo Li ◽  
Yun Wang ◽  
Xiaobing Zhou

Multi-switching combination synchronization of three fractional-order delayed systems is investigated. This is a generalization of previous multi-switching combination synchronization of fractional-order systems by introducing time-delays. Based on the stability theory of linear fractional-order systems with multiple time-delays, we propose appropriate controllers to obtain multi-switching combination synchronization of three non-identical fractional-order delayed systems. In addition, the results of our numerical simulations show that they are in accordance with the theoretical analysis.


2013 ◽  
Vol 850-851 ◽  
pp. 796-799
Author(s):  
Xiao Ya Yang

In this paper, synchronization of a fractional-order system with unknown parameters is studied. The chaotic attractor of the system is got by means of numerical simulation. Then based on the stability theory of fractional-order systems, suitable synchronization controllers and parameter identification rules for the unknown parameters are designed. Numerical simulations are used to demonstrate the effectiveness of the controllers.


2013 ◽  
Vol 850-851 ◽  
pp. 872-875
Author(s):  
Hong Gang Dang

In this paper, adaptive synchronization of the fractional-order Sprott N system is investigated. Firstly, the chaotic attractors on different phase plane of the system are got by means of numerical simulation. Then based on the stability theory of fractional-order systems, the adaptive synchronization of the system is realized. Numerical simulations are used to demonstrate the effectiveness for the controllers.


2014 ◽  
Vol 926-930 ◽  
pp. 3318-3321
Author(s):  
Xiao Jun Liu

In this paper, the synchronization for two fractional-order systems is investigated. Firstly, the chaotic attractors of two systems are got by means of numerical simulation. Then based on the stability theory of fractional-order systems, the synchronization of these two systems is realized. Numerical simulations are used to demonstrate the effectiveness for the controllers.


Sign in / Sign up

Export Citation Format

Share Document