PROJECTIVE SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS BASED ON STATE OBSERVER

2012 ◽  
Vol 26 (30) ◽  
pp. 1250176 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU

Based on the stability theory of fractional order systems and the pole placement technique, this paper designs a synchronization scheme with the state observer method and achieves the projective synchronization of a class of fractional order chaotic systems. Taking an example for the fractional order unified system by using this observer controller, and numerical simulations of fractional order Lorenz-like system, fractional order Lü system and fractional order Chen system are provided to demonstrate the effectiveness of the proposed scheme.

2013 ◽  
Vol 27 (30) ◽  
pp. 1350195 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve the generalized synchronization between two different fractional-order chaotic systems. Based on the stability theory of fractional-order systems and the pole placement technique, a controller is designed and theoretical proof is given. Two groups of examples are shown to verify the effectiveness of the proposed scheme, the first one is to realize the generalized synchronization between the fractional-order Chen system and the fractional-order Rössler system, the second one is between the fractional-order Lü system and the fractional-order hyperchaotic Lorenz system. The corresponding numerical simulations verify the effectiveness of the proposed scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-xin Yang ◽  
Jun Jiang

The hybrid projective synchronization for fractional-order chaotic systems with time delay is investigated in this paper. On the basis of stability analysis of fractional-order systems and pole placement technique, a novel and general approach is proposed. The hybrid projective synchronization of fractional-order chaotic and hyperchaotic systems with time delay is achieved via designing an appropriate controller. Corresponding numerical results are presented to demonstrate the effectiveness of the proposed synchronization scheme. Furthermore, the influence of the fractional order on the synchronization process is discussed. The result reveals that the fractional order has a significant effect on the synchronization speed.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding ◽  
Yu-xia Cao

A hybrid projective synchronization scheme for two identical fractional-order chaotic systems is proposed in this paper. Based on the stability theory of fractional-order systems, a controller for the synchronization of two identical fractional-order chaotic systems is designed. This synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid projective synchronization for the fractional-order Chen chaotic system and hybrid projective synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the validity and feasibility of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 481 ◽  
Author(s):  
Zhonghui Li ◽  
Tongshui Xia ◽  
Cuimei Jiang

By designing a state observer, a new type of synchronization named complex modified projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic systems. Combining stability results of the fractional-order systems and the pole placement method, this paper proves the stability of fractional-order error systems and realizes complex modified projective synchronization. This method is so effective that it can be applied in engineering. Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems, including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to show the correctness of this new synchronization strategy.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


2009 ◽  
Vol 23 (13) ◽  
pp. 1695-1714 ◽  
Author(s):  
XING-YUAN WANG ◽  
JING ZHANG

In this paper, based on the modified state observer method, synchronization and generalized synchronization of a class of fractional order chaotic systems are presented. The two synchronization approaches are theoretically and numerically studied and two simple criterions are proposed. By using the stability theory of linear fractional order systems, suitable conditions for achieving synchronization and generalized synchronization are given. Numerical simulations coincide with the theoretical analysis.


2010 ◽  
Vol 24 (17) ◽  
pp. 3351-3363 ◽  
Author(s):  
XING YUAN WANG ◽  
JUAN MENG

In this paper, the generalized projective synchronization of chaotic neural networks is investigated. Based on the modified nonlinear state observer algorithm and the pole placement technique, a synchronization scheme is designed. The generalized projective synchronization of different chaotic neural networks can be achieved by using the proposed method. Numerical simulations further demonstrate the effectiveness of the proposed scheme.


2013 ◽  
Vol 385-386 ◽  
pp. 919-922 ◽  
Author(s):  
Hao Feng ◽  
Yang Yang ◽  
Shi Ping Yang

In this paper, the full state hybrid projective synchronization (FSHPS) between two different fractional order chaotic systems is investigated. i.e., the fractional order Chen system and the fractional order Lorenz system. Based on the synchronization error system feedback linearization theory, a new method combining feedback control is proposed for theFSHPSin fractional order chaotic systems. Numerical simulations are presented to verify the effectiveness and the feasibility of the synchronization scheme.


Sign in / Sign up

Export Citation Format

Share Document