TEMPERATURE DEPENDENCE OF THE n PARAMETER IN THE DISSADO–HILL MODEL

2013 ◽  
Vol 27 (06) ◽  
pp. 1350040 ◽  
Author(s):  
A. DOFF ◽  
J. C. GENTILINI ◽  
O. CAMBRUZZI

The response of a dielectric material to the application of an external electric field is characterized by the dependence of the complex dielectric polarization susceptibility on frequency ω and external factors such as temperature T. Even today, we do not have a universal model that describes the behavior for all materials. However, Dissado and Hill (DH) have proposed a model based on many-body interactions that is able to explain the dielectric response observed in many dielectric materials. By considering an analogy between the description given in the cluster approach to the structure of imperfect materials and the formalism developed in quantum field theory (QFT), particularly the scale invariance behavior displayed by the dependence of the running coupling constant of quantum electrodynamics (QED) on the energy scale Λ, we will include temperature dependence in the (n) and (m) parameters of the DH model to consider the effects of temperature on the dielectric response of some materials.

2006 ◽  
Vol 21 (18) ◽  
pp. 3809-3824 ◽  
Author(s):  
CLÁUDIO NASSIF ◽  
P. R. SILVA

In this work we apply Thompson's method (of the dimensions and scales) to study some features of the Quantum Electrodynamics and Chromodynamics. This heuristic method can be considered as a simple and alternative way to the Renormalization Group approach and when applied to QED-Lagrangian is able to obtain in a first approximation both the running coupling constant behavior of α(μ) and the mass m(μ). The calculations are evaluated only at dc = 4, where dc is the upper critical dimension of the problem, so that we obtain the logarithmic behavior both for the coupling α and the excess of mass Δm on the energy scale μ. Although our results are well known in the vast literature of field theories, the advantage of Thompson's method, beyond its simplicity is that it is able to extract directly from QED-Lagrangian the physical (finite) behavior of α(μ) and m(μ), bypassing hard problems of divergences which normally appear in the conventional renormalization schemes applied to field theories like QED. Quantum Chromodynamics (QCD) is also treated by the present method in order to obtain the quark condensate value. Besides this, the method is also able to evaluate the vacuum pressure at the boundary of the nucleon. This is done by assumming a step function behavior for the running coupling constant of the QCD, which fits nicely to some quantities related to the strong interaction evaluated through the MIT-bag model.


2001 ◽  
Vol 16 (16) ◽  
pp. 2873-2894 ◽  
Author(s):  
GUANG-JIONG NI ◽  
GUO-HONG YANG ◽  
RONG-TANG FU ◽  
HAIBIN WANG

Based on a simple but effective regularization-renormalization method (RRM), the running coupling constants (RCC) of fermions with masses in quantum electrodynamics (QED) and quantum chromodynamics (QCD) are calculated by renormalization group equation (RGE). Starting at Q=0 (Q being the momentum transfer), the RCC in QED increases with the increase of Q whereas the RCCs for different flavors of quarks with masses in QCD are different and they increase with the decrease of Q to reach a maximum at low Q for each flavor of quark and then decreases to zero at Q→0. Thus a constraint on the mass of light quarks, the hadronization energy scale of quark–antiquark pairs are derived.


2019 ◽  
Author(s):  
Chem Int

Model was developed for the prediction of polarization characteristics in a dielectric material exhibiting piezoelectricity and electrostriction based on mathematical equations and MATLAB computer simulation software. The model was developed based on equations of polarization and piezoelectric constitutive law and the functional coefficient of Lead Zirconate Titanate (PZT) crystal material used was 2.3×10-6 m (thickness), the model further allows the input of basic material and calculation of parameters of applied voltage levels, applied stress, pressure, dielectric material properties and so on, to generate the polarization curve, strain curve and the expected deformation change in the material length charts. The mathematical model revealed that an application of 5 volts across the terminals of a 2.3×10-6 m thick dielectric material (PZT) predicted a 1.95×10-9 m change in length of the material, which indicates piezoelectric properties. Both polarization and electric field curve as well as strain and voltage curve were also generated and the result revealed a linear proportionality of the compared parameters, indicating a resultant increase in the electric field yields higher polarization of the dielectric materials atmosphere.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000986-001015
Author(s):  
Eric Huenger ◽  
Joe Lachowski ◽  
Greg Prokopowicz ◽  
Ray Thibault ◽  
Michael Gallagher ◽  
...  

As advanced packaging application space evolves and continues to deviate from the conventional shrinkage pathway predicted by Moore's law, material suppliers need to continue to work with OEMs, OSATs and Foundries to identify specific opportunities. One such opportunity continues to present itself in developing new materials to support new platforms for next generation products to support 3D chip stacking and TSV applications. The newer material sets can be established to meet more challenging design requirements associated with the demands, presented by the application from both a physical/lithographical processing and design perspective. Next generation packages requires the development of new dielectric materials that can support both the physical demands of 3D chip stacking and TSV package design aspects while maintaining strengths of the existing material platform. While vertical integration necessitates the use of thinned substrates and its associated integration challenges, there is a continuing need to support horizontal shrinkage typical of the Moore's Law, which pushes the lithography envelope requiring finer pitch and smaller feature resolution capability. This presentation identifies the strategy we have taken and highlights approach taking in the development of low temperature curable photoimageable dielectric materials with enhanced lithographic performance. We will discuss the methodology used to create benzocyclobutene based dielectric material curable at 180 °C and show how lithographic performance can be tuned to allow sub 5 micron via using broad band illumination. Finally we will review the impact of low temperature processing on the mechanical, thermal and electrical properties of this novel photoimageable dielectric material.


2019 ◽  
Vol 09 (06) ◽  
pp. 1950046
Author(s):  
C. L. Wang

Two parameters are proposed as Jonscher indices, named after A. K. Jonscher for his pioneering contribution to the universal dielectric relaxation law. Time domain universal dielectric relaxation law is then obtained from the asymptotic behavior of dielectric response function and relaxation function by replacing parameters in Mittag–Leffler functions with Jonscher indices. Relaxation types can be easily determined from experimental data of discharge current in barium stannate titanate after their Jonscher indices are determined.


2002 ◽  
Vol 720 ◽  
Author(s):  
Minki Jeong ◽  
Victor Kazmirenko ◽  
Yuriy Poplavko ◽  
Beomjin Kim ◽  
Sunggi Baik

AbstractElectrically tunable microwave phase shifter was developed by inserting dielectric slab and piezoelectric actuator inside a waveguide. Air-dielectric sandwich structure of dielectric material and thin air gap was placed inside a waveguide, where the thickness of air gap is controlled by the actuator. Small changes in the ratio between the thickness of dielectric material and air gap induce significant changes in the effective dielectric constant of the air-dielectric sandwich structure. Phase shifts of 20∼200 degrees were realized with the dielectric materials such as (Mg, Ca)TiO3 while the thickness of air gap is changed between 0 to 30 μm by piezoelectric control. Since the dielectric ceramics has very small loss (tand ∼ 10-4) and the air gap has practically no loss, the total structure shows low insertion loss.


2008 ◽  
Vol 55 ◽  
pp. 160-163
Author(s):  
Sung Min Park ◽  
Mun Ja Kim ◽  
Sang Hyun Park ◽  
Jin Young Kim ◽  
Ji Beom Yoo

Spin on glass (SOG) and Tetraethylorthosilicate (TEOS) as a dielectric material were applied for inorganic powder type electroluminescent (EL) device. The spin coating method was used for the SOG layer or TEOS layer formation and phosphor layer formation. The phosphor layer was composed of ZnS:Cu,Cl powders and organic binder. The brightness of powder EL has been measured.


Sign in / Sign up

Export Citation Format

Share Document