Local community detection based on modularity metric G

2015 ◽  
Vol 29 (33) ◽  
pp. 1550215 ◽  
Author(s):  
Zhengyou Xia ◽  
Xiangying Gao ◽  
Xia Zhang

In complex network analysis, the local community detection problem is getting more and more attention. Because of the difficulty to get complete information of the network, such as the World Wide Web, the local community detection has been proposed by researcher. That is, we can detect a community from a certain source vertex with limited knowledge of an entire graph. The previous methods of local community detection now are more or less inadequate in some places. In this paper, we have proposed a new local modularity metric [Formula: see text] and based on it, a two-phase algorithm is proposed. The method we have taken is a greedy addition algorithm which means adding vertices into the community until [Formula: see text] does not increase. Compared with the previous methods, when our method is calculating the modularity metric, the range of vertices what we considered may affect the quality of the community detection wider. The results of experiments show that whether in computer-generated random graph or in the real networks, our method can effectively solve the problem of the local community detection.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Zhou ◽  
Guibin Sun ◽  
Yan Xing ◽  
Ranran Zhou ◽  
Zhixiao Wang

In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1438
Author(s):  
Patricia Conde-Cespedes

Complex networks analysis (CNA) has attracted so much attention in the last few years. An interesting task in CNA complex network analysis is community detection. In this paper, we focus on Local Community Detection, which is the problem of detecting the community of a given node of interest in the whole network. Moreover, we study the problem of finding local communities of high density, known as α-quasi-cliques in graph theory (for high values of α in the interval ]0,1[). Unfortunately, the higher α is, the smaller the communities become. This led to the maximal α-quasi-clique community of a given node problem, which is, the problem of finding local communities that are α-quasi-cliques of maximal size. This problem is NP-hard, then, to approach the optimal solution, some heuristics exist. When α is high (>0.5) the diameter of a maximal α-quasi-clique is at most 2. Based on this property, we propose an algorithm to calculate an upper bound to approach the optimal solution. We evaluate our method in real networks and conclude that, in most cases, the bound is very accurate. Furthermore, for a real small network, the optimal value is exactly achieved in more than 80% of cases.


1996 ◽  
Vol 5 (2) ◽  
pp. 16-18 ◽  
Author(s):  
Alistair Inglis

A comparative study was made of the ways in which Australian universities are disseminating information about their courses over the World Wide Web. The study examined the quantity and quality of the information provided, the forms in which information is presented, and means of access to the information. The results of the survey indicated that while the majority of universities are now publishing at least some information over the World Wide Web, both the quantity and quality of information is variable. Implications for further development of institutional course information databases are discussed.


2018 ◽  
Vol 29 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Chuang Liu ◽  
Linan Fan ◽  
Zhou Liu ◽  
Xiang Dai ◽  
Jiamei Xu ◽  
...  

Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.


Author(s):  
Guishen Wang ◽  
Kaitai Wang ◽  
Hongmei Wang ◽  
Huimin Lu ◽  
Xiaotang Zhou ◽  
...  

Local community detection algorithms are an important type of overlapping community detection methods. Local community detection methods identify local community structure through searching seeds and expansion process. In this paper, we propose a novel local community detection method on line graph through degree centrality and expansion (LCDDCE). We firstly employ line graph model to transfer edges into nodes of a new graph. Secondly, we evaluate edges relationship through a novel node similarity method on line graph. Thirdly, we introduce local community detection framework to identify local node community structure of line graph, combined with degree centrality and PageRank algorithm. Finally, we transfer them back into original graph. The experimental results on three classical benchmarks show that our LCDDCE method achieves a higher performance on normalized mutual information metric with other typical methods.


Author(s):  
Georgia Baltsou ◽  
Konstantinos Tsichlas ◽  
Athena Vakali

Sign in / Sign up

Export Citation Format

Share Document