Quantum two-state sharing

2021 ◽  
pp. 2150292
Author(s):  
Peng-Cheng Ma ◽  
Gui-Bin Chen ◽  
Xiao-Wei Li ◽  
You-Bang Zhan

In this paper, we propose a novel scheme for quantum two-state sharing (QTSS) by using a five-qubit entangled state as the quantum channel. In this scheme, a dealer Alice has two unknown quantum states and wants her three agents to share the quantum states. After the dealer performs a four-qubit measurement on her qubits, and the controller employs a single-qubit measurement on his own qubit, the state receivers can reconstruct the original states by using the appropriate unitary operations. It is shown that, only if all agents collaborate with each other, the QTSS can be completed with unit success probability.

2016 ◽  
Vol 14 (03) ◽  
pp. 1650015 ◽  
Author(s):  
Na Chen ◽  
Dong-Xiao Quan ◽  
Chang-Hua Zhu ◽  
Jia-Zhen Li ◽  
Chang-Xing Pei

In this paper, we propose a scheme for deterministic joint remote state preparation (JRSP). Two spatially separated senders intend to help a receiver remotely prepare an arbitrary single-qubit state. Four-particle partially entangled state is constructed to serve as the quantum channel. By determining right unitary operations for the senders and appropriate recovery operations for the receiver, the target state can be reestablished with unit success probability, irrespective of the channel parameter.


2011 ◽  
Vol 09 (06) ◽  
pp. 1437-1448
Author(s):  
YI-BAO LI ◽  
KUI HOU ◽  
SHOU-HUA SHI

We propose two kinds of schemes for multiparty remote state preparation (MRSP) of the multiparticle d-dimensional equatorial quantum states by using partial entangled state as the quantum channel. Unlike more remote state preparation scheme which only one sender knows the original state to be remotely prepared, the quantum state is shared by two-party or multiparty in this scheme. We show that if and only if all the senders agree to collaborate with each other, the receiver can recover the original state with certain probability. It is found that the total success probability of MRSP is only by means of the smaller coefficients of the quantum channel and the dimension d.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050204
Author(s):  
Shiya Sun ◽  
Huisheng Zhang

In this paper, we present a deterministic four-party quantum cyclic controlled teleportation (QCYCT) scheme, by using a multi-qubit partially entangled state as the quantum channel. In this scheme, Alice can teleport an arbitrary [Formula: see text]-qubit state to Bob, Bob can teleport an arbitrary [Formula: see text]-qubit state to Charlie and Charlie can teleport an arbitrary [Formula: see text]-qubit state to Alice under the control of the supervisor David. We utilize rotation gate, Hadamard gates and controlled-NOT (CNOT) gates to construct the multi-qubit partially entangled channel. Only Bell-state measurements, single-qubit von-Neumann measurement and proper unitary operations are required in this scheme, which can be realized in practice easily based on the present quantum experiment technologies. The direction of cyclic controlled teleportation of arbitrary multi-qubit states can also be changed by altering the quantum channel. Analysis demonstrates that the success probability of the proposed scheme can still reach 100% although the quantum channel is non-maximally entangled. Furthermore, the proposed four-party scheme can be generalized into the case involving [Formula: see text] correspondents, which is more suitable for quantum communication networks. We also calculate the intrinsic efficiency and discuss the security of the proposed scheme. Compared with the existing QCYCT schemes which realized cyclic controlled teleportation of arbitrary single-qubit states, specific two-qubit and three-qubit states, the proposed scheme is of general significance.


2021 ◽  
pp. 2150249
Author(s):  
Vikram Verma

In this paper, by utilizing a nine-qubit entangled state as a quantum channel, we propose new schemes for symmetric and asymmetric cyclic controlled quantum teleportation (CYCQT). In our proposed schemes, four participants Alice, Bob, Charlie and David teleport their unknown quantum states cyclically among themselves with the help of a controller Eve. No participants can reconstruct the original states sent from the respective senders without the permission of the controller. Also, by considering same nine-qubit entangled state as a quantum channel, we propose a generalized scheme for CYCQT of multi-qubit states. In contrast to the previous CYCQT schemes involving three communicators and a controller, there are four communicators and a controller in the proposed schemes. Also, compared with previous CYCQT schemes, our proposed CYCQT schemes require less consumption of quantum resource and the intrinsic efficiency of the generalized scheme increases with the increase of number of qubits in the information states.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 352 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Yi-Tao Gou ◽  
Jin-Xing Hou ◽  
Li-Ke Cao ◽  
Xiao-Hui Wang

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.


2021 ◽  
pp. 2150034
Author(s):  
Zhanjun Zhang

A three-party scheme for sharing an arbitrary single-qubit operation on a distant target qubit is proposed by first utilizing a six-qubit genuinely entangled state presented by [Borras et al., J. Phys. A 40, 13407 (2007)]. The security of the scheme is simply analyzed and ensured. The essential role which the state in the given qubit distribution plays in the QOS task is revealed. The important features including the sharing determinacy and the sharer symmetry are identified. Moreover, the experimental implementation feasibility of the scheme is discussed and confirmed.


2020 ◽  
pp. 2150145
Author(s):  
Vikram Verma

In 2017, Chen et al. [Quantum Inf. Process. 16 (2017) 201] proposed a scheme for cyclic quantum teleportation (CYQT) of three single-qubit information states among three participants by using six-qubit entangled state as a quantum channel. Following the work of Chen et al., we propose a new scheme for CYQT in which four participants cyclically teleport four arbitrary single-qubit information states among themselves by using two [Formula: see text]-states as a quantum channel. In our scheme, reverse CYQT can also be realized throughout changing the qubit pairs to be measured by each participant. We also generalize our scheme for CYQT of [Formula: see text]-qubit entangled states.


Author(s):  
Jinwei Wang ◽  
Liping Huang

In this paper, an asymmetric bidirectional controlled quantum teleportation via a six-qubit partially entangled state is given, in which Alice wants to transmit a two-qubit entangled state to Bob and Bob wants to transmit a single-qubit state to Alice on the same time. Although the six-qubit state as quantum channel is partially entangled, the teleportation is implemented deterministically. Furthermore, only Bell-state measurements, single-qubit measurements and some unitary operations are needed in the scheme.


2008 ◽  
Vol 22 (13) ◽  
pp. 2129-2137
Author(s):  
JIN-MING LIU ◽  
YI-CAI WANG ◽  
XIAO-QI XIAO

We present two schemes for probabilistically teleporting a two-atom entangled state using a three-atom partially entangled state as the quantum channel in cavity QED with the help of separate atomic measurements. The first scheme is only based on the interaction between two driven atoms and a quantized cavity mode in the large detuning limit, so the effects of both cavity decay and the thermal field are eliminated. In the second scheme, it is necessary to introduce an additional resonant cavity besides the thermal cavity to realize the teleportation, and the corresponding success probability is improved.


2012 ◽  
Vol 10 (07) ◽  
pp. 1250074 ◽  
Author(s):  
YOU-BANG ZHAN ◽  
PENG-CHENG MA ◽  
QUN-YONG ZHANG

We present two novel protocols for remote implementation of an unknown single-qubit operation with an EPR pair and a high-dimensional entangled state as the quantum channel, without and with quantum control. The main strategy of the protocols is teleportation of an unknown single-qubit operation, which consists of an usual teleportation of an arbitrary single-qubit state, nonsymmetric basis measurement, and corresponding local transformation. It is shown that the teleportation of the quantum operation can be implemented with unit successful probability.


Sign in / Sign up

Export Citation Format

Share Document