entangled state
Recently Published Documents


TOTAL DOCUMENTS

1221
(FIVE YEARS 240)

H-INDEX

42
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jino Heo ◽  
Seong Gon Choi

Abstract We propose photonic schemes for the distribution and reconstruction of a two-qubit entangled state using a hybrid entangled state under a noisy quantum channel. First, to generate a hybrid entangled state correlated with polarizations and time-bins, we employ a quantum dot (QD)-cavity system (nonlinear optical gate) and linear optical devices to implement controlled operation. These schemes can achieve the distribution and reconstruction of a two-qubit entangled state from hybrid entanglement by utilizing only linear optical devices without a QD-cavity system (i.e., a nonlinear optical device) for users who want to share an entangled state under a noisy quantum channel. For a feasible realization of the proposed schemes, we analyze the interaction between the photons and QD-cavity system and demonstrate the experimental conditions under which the reliable performance of the QD-cavity system is achieved.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 111
Author(s):  
Dianjun Lu ◽  
Zhihui Li ◽  
Jing Yu ◽  
Zhaowei Han

In this paper, we present a verifiable arbitrated quantum signature scheme based on controlled quantum teleportation. The five-qubit entangled state functions as a quantum channel. The proposed scheme uses mutually unbiased bases particles as decoy particles and performs unitary operations on these decoy particles, applying the functional values of symmetric bivariate polynomial. As such, eavesdropping detection and identity authentication can both be executed. The security analysis shows that our scheme can neither be disavowed by the signatory nor denied by the verifier, and it cannot be forged by any malicious attacker.


2022 ◽  
Author(s):  
Rui He ◽  
Xiangyuan Liu ◽  
Xiangfei Wei ◽  
Congbing Wu

Abstract In the context of normal product, we use the method of the integration within an ordered product (IWOP) of operators to derive three representations of the two-mode Wigner operator: SU (2) symmetric description, SU (1, 1) symmetric description and polar coordinate form. We find that two-mode Wigner operator has multiple potential degrees of freedom. As the physical meaning of the selected integral variable changes, Wigner operator shows different symmetries. In particular, in the case of polar coordinates, we reveal the natural connection between the two-mode Wigner operator and the entangled state representation.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 614
Author(s):  
Honghao Fu

Let p be an odd prime and let r be the smallest generator of the multiplicative group Zp∗. We show that there exists a correlation of size Θ(r2) that self-tests a maximally entangled state of local dimension p−1. The construction of the correlation uses the embedding procedure proposed by Slofstra (Forum of Mathematics, Pi. (2019)). Since there are infinitely many prime numbers whose smallest multiplicative generator is in the set {2,3,5} (D.R. Heath-Brown The Quarterly Journal of Mathematics (1986) and M. Murty The Mathematical Intelligencer (1988)), our result implies that constant-sized correlations are sufficient for self-testing of maximally entangled states with unbounded local dimension.


2022 ◽  
Vol 71 (1) ◽  
pp. 010303-010303
Author(s):  
Wei Rong-Yu ◽  
◽  
Li Jun ◽  
Zhang Da-Ming ◽  
Wang Wei-Hao

2022 ◽  
Vol 2148 (1) ◽  
pp. 012004
Author(s):  
Zhong Guan

Abstract There discovered the maximum possible magnetic induction in nature, equal to the magnetic induction at the poles of an electron’s spin, When the spin magnetic moments of two electrons are close to each other, they act on each other with the maximum possible magnetic induction, and finally entered the maximally entangled state after the energy drops. By this time, the spin magnetic moments on both sides situated in anti-parallel, between them there existed four invisible magnetic circuit, and each magnetic circuit just contain a fluxon. No matter how far the distance between the spins, owing to the inalienability of fluxon, no magnetic flux leakage (coupling degree 100%), so these four magnetic circuit will always existed, maintaining the maximally entangled state system immutably. This is the material basis for the entangled state to be existed, nothing to do with “spooky action at a distance”. In this paper, a visual schematic diagram has drawn to describe these, and the magnetic force state, force relationship and “light barrier” problem are analyzed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kapil K. Sharma ◽  
Suprabhat Sinha ◽  
Krishna Chandra

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 611
Author(s):  
Seungbeom Chin ◽  
Yong-Su Kim ◽  
Sangmin Lee

The indistinguishability of quantum particles is widely used as a resource for the generation of entanglement. Linear quantum networks (LQNs), in which identical particles linearly evolve to arrive at multimode detectors, exploit the indistinguishability to generate various multipartite entangled states by the proper control of transformation operators. However, it is challenging to devise a suitable LQN that carries a specific entangled state or compute the possible entangled state in a given LQN as the particle and mode number increase. This research presents a mapping process of arbitrary LQNs to graphs, which provides a powerful tool for analyzing and designing LQNs to generate multipartite entanglement. We also introduce the perfect matching diagram (PM diagram), which is a refined directed graph that includes all the essential information on the entanglement generation by an LQN. The PM diagram furnishes rigorous criteria for the entanglement of an LQN and solid guidelines for designing suitable LQNs for the genuine entanglement. Based on the structure of PM diagrams, we compose LQNs for fundamental N-partite genuinely entangled states.


Author(s):  
Xiang Yan ◽  
Peng Fei Zhang ◽  
Cheng Yu Fan ◽  
Jing Hui Zhang

Abstract The entangled orbital angular momentum (OAM) photons propagating across a weakly turbulent atmosphere are investigated. Here, the paper uses the single-phase screen model based on the Kolmogorov theory of turbulence, especially focuses on the influence of the backward scattering on OAM evolution. The results indicate that the backward scattering plays an important role in the analysis of OAM entanglement evolution in the turbulent atmosphere. It can not be negligible especially for higher-order OAM mode. Moreover, when OAM mode is greater than 4, entangled photon pairs composed of higher OAM modes are not more robust in turbulence within the weak scintillation regime. These results will be useful in future investigations of OAM-based optical wave propagation through turbulent atmosphere.


Sign in / Sign up

Export Citation Format

Share Document