AN ENHANCED LIPSCHITZ EMBEDDING CLASSIFIER FOR MULTI-EMOTION SPEECH ANALYSIS

Author(s):  
MINGYU YOU ◽  
GUO-ZHENG LI ◽  
JACK Y. YANG ◽  
MARY QU YANG

This paper proposes an Enhanced Lipschitz Embedding based Classifier (ELEC) for the classification of multi-emotions from speech signals. ELEC adopts geodesic distance to preserve the intrinsic geometry at all scales of speech corpus, instead of Euclidean distance. Based on the minimal geodesic distance to vectors of different emotions, ELEC maps the high dimensional feature vectors into a lower space. Through analyzing the class labels of the neighbor training vectors in the compressed low space, ELEC classifies the test data into six archetypal emotional states, i.e. neutral, anger, fear, happiness, sadness and surprise. Experimental results on clear and noisy data set demonstrate that compared with the traditional methods of dimensionality reduction and classification, ELEC achieves 15% improvement on average for speaker-independent emotion recognition and 11% for speaker-dependent.

2020 ◽  
Vol 10 (6) ◽  
pp. 1401-1407
Author(s):  
Hyungtai Kim ◽  
Minhee Lee ◽  
Min Kyun Sohn ◽  
Jongmin Lee ◽  
Deog Yung Kim ◽  
...  

This paper shows the simultaneous clustering and classification that is done in order to discover internal grouping on an unlabeled data set. Moreover, it simultaneously classifies the data using clusters discovered as class labels. During the simultaneous clustering and classification, silhouette and F1 scores were calculated for clustering and classification, respectively, according to the number of clusters in order to find an optimal number of clusters that guarantee the desired level of classification performance. In this study, we applied this approach to the data set of Ischemic stroke patients in order to discover function recovery patterns where clear diagnoses do not exist. In addition, we have developed a classifier that predicts the type of function recovery for new patients with early clinical test scores in clinically meaningful levels of accuracy. This classifier can be a helpful tool for clinicians in the rehabilitation field.


Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


2021 ◽  
Vol 11 (9) ◽  
pp. 3974
Author(s):  
Laila Bashmal ◽  
Yakoub Bazi ◽  
Mohamad Mahmoud Al Rahhal ◽  
Haikel Alhichri ◽  
Naif Al Ajlan

In this paper, we present an approach for the multi-label classification of remote sensing images based on data-efficient transformers. During the training phase, we generated a second view for each image from the training set using data augmentation. Then, both the image and its augmented version were reshaped into a sequence of flattened patches and then fed to the transformer encoder. The latter extracts a compact feature representation from each image with the help of a self-attention mechanism, which can handle the global dependencies between different regions of the high-resolution aerial image. On the top of the encoder, we mounted two classifiers, a token and a distiller classifier. During training, we minimized a global loss consisting of two terms, each corresponding to one of the two classifiers. In the test phase, we considered the average of the two classifiers as the final class labels. Experiments on two datasets acquired over the cities of Trento and Civezzano with a ground resolution of two-centimeter demonstrated the effectiveness of the proposed model.


Author(s):  
Xiongzhi Ai ◽  
Jiawei Zhuang ◽  
Yonghua Wang ◽  
Pin Wan ◽  
Yu Fu

AbstractUltrasonic image examination is the first choice for the diagnosis of thyroid papillary carcinoma. However, there are some problems in the ultrasonic image of thyroid papillary carcinoma, such as poor definition, tissue overlap and low resolution, which make the ultrasonic image difficult to be diagnosed. Capsule network (CapsNet) can effectively address tissue overlap and other problems. This paper investigates a new network model based on capsule network, which is named as ResCaps network. ResCaps network uses residual modules and enhances the abstract expression of the model. The experimental results reveal that the characteristic classification accuracy of ResCaps3 network model for self-made data set of thyroid papillary carcinoma was $$81.06\%$$ 81.06 % . Furthermore, Fashion-MNIST data set is also tested to show the reliability and validity of ResCaps network model. Notably, the ResCaps network model not only improves the accuracy of CapsNet significantly, but also provides an effective method for the classification of lesion characteristics of thyroid papillary carcinoma ultrasonic images.


1987 ◽  
Vol 65 (3) ◽  
pp. 691-707 ◽  
Author(s):  
A. F. L. Nemec ◽  
R. O. Brinkhurst

A data matrix of 23 generic or subgeneric taxa versus 24 characters and a shorter matrix of 15 characters were analyzed by means of ordination, cluster analyses, parsimony, and compatibility methods (the last two of which are phylogenetic tree reconstruction methods) and the results were compared inter alia and with traditional methods. Various measures of fit for evaluating the parsimony methods were employed. There were few compatible characters in the data set, and much homoplasy, but most analyses separated a group based on Stylaria from the rest of the family, which could then be separated into four groups, recognized here for the first time as tribes (Naidini, Derini, Pristinini, and Chaetogastrini). There was less consistency of results within these groups. Modern methods produced results that do not conflict with traditional groupings. The Jaccard coefficient minimizes the significance of symplesiomorphy and complete linkage avoids chaining effects and corresponds to actual similarities, unlike single or average linkage methods, respectively. Ordination complements cluster analysis. The Wagner parsimony method was superior to the less flexible Camin–Sokal approach and produced better measure of fit statistics. All of the aforementioned methods contain areas susceptible to subjective decisions but, nevertheless, they lead to a complete disclosure of both the methods used and the assumptions made, and facilitate objective hypothesis testing rather than the presentation of conflicting phylogenies based on the different, undisclosed premises of manual approaches.


2002 ◽  
Vol 12 (03) ◽  
pp. 249-261 ◽  
Author(s):  
XUEHOU TAN

Let π(a,b) denote the shortest path between two points a, b inside a simple polygon P, which totally lies in P. The geodesic distance between a and b in P is defined as the length of π(a,b), denoted by gd(a,b), in contrast with the Euclidean distance between a and b in the plane, denoted by d(a,b). Given two disjoint polygons P and Q in the plane, the bridge problem asks for a line segment (optimal bridge) that connects a point p on the boundary of P and a point q on the boundary of Q such that the sum of three distances gd(p′,p), d(p,q) and gd(q,q′), with any p′ ∈ P and any q′ ∈ Q, is minimized. We present an O(n log 3 n) time algorithm for finding an optimal bridge between two simple polygons. This significantly improves upon the previous O(n2) time bound. Our result is obtained by making substantial use of a hierarchical structure that consists of segment trees, range trees and persistent search trees, and a structure that supports dynamic ray shooting and shortest path queries as well.


2017 ◽  
Vol 45 (2) ◽  
pp. 66-74
Author(s):  
Yufeng Ma ◽  
Long Xia ◽  
Wenqi Shen ◽  
Mi Zhou ◽  
Weiguo Fan

Purpose The purpose of this paper is automatic classification of TV series reviews based on generic categories. Design/methodology/approach What the authors mainly applied is using surrogate instead of specific roles or actors’ name in reviews to make reviews more generic. Besides, feature selection techniques and different kinds of classifiers are incorporated. Findings With roles’ and actors’ names replaced by generic tags, the experimental result showed that it can generalize well to agnostic TV series as compared with reviews keeping the original names. Research limitations/implications The model presented in this paper must be built on top of an already existed knowledge base like Baidu Encyclopedia. Such database takes lots of work. Practical implications Like in digital information supply chain, if reviews are part of the information to be transported or exchanged, then the model presented in this paper can help automatically identify individual review according to different requirements and help the information sharing. Originality/value One originality is that the authors proposed the surrogate-based approach to make reviews more generic. Besides, they also built a review data set of hot Chinese TV series, which includes eight generic category labels for each review.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajit Nair ◽  
Santosh Vishwakarma ◽  
Mukesh Soni ◽  
Tejas Patel ◽  
Shubham Joshi

Purpose The latest 2019 coronavirus (COVID-2019), which first appeared in December 2019 in Wuhan's city in China, rapidly spread around the world and became a pandemic. It has had a devastating impact on daily lives, the public's health and the global economy. The positive cases must be identified as soon as possible to avoid further dissemination of this disease and swift care of patients affected. The need for supportive diagnostic instruments increased, as no specific automated toolkits are available. The latest results from radiology imaging techniques indicate that these photos provide valuable details on the virus COVID-19. User advanced artificial intelligence (AI) technologies and radiological imagery can help diagnose this condition accurately and help resolve the lack of specialist doctors in isolated areas. In this research, a new paradigm for automatic detection of COVID-19 with bare chest X-ray images is displayed. Images are presented. The proposed model DarkCovidNet is designed to provide correct binary classification diagnostics (COVID vs no detection) and multi-class (COVID vs no results vs pneumonia) classification. The implemented model computed the average precision for the binary and multi-class classification of 98.46% and 91.352%, respectively, and an average accuracy of 98.97% and 87.868%. The DarkNet model was used in this research as a classifier for a real-time object detection method only once. A total of 17 convolutionary layers and different filters on each layer have been implemented. This platform can be used by the radiologists to verify their initial application screening and can also be used for screening patients through the cloud. Design/methodology/approach This study also uses the CNN-based model named Darknet-19 model, and this model will act as a platform for the real-time object detection system. The architecture of this system is designed in such a way that they can be able to detect real-time objects. This study has developed the DarkCovidNet model based on Darknet architecture with few layers and filters. So before discussing the DarkCovidNet model, look at the concept of Darknet architecture with their functionality. Typically, the DarkNet architecture consists of 5 pool layers though the max pool and 19 convolution layers. Assume as a convolution layer, and as a pooling layer. Findings The work discussed in this paper is used to diagnose the various radiology images and to develop a model that can accurately predict or classify the disease. The data set used in this work is the images bases on COVID-19 and non-COVID-19 taken from the various sources. The deep learning model named DarkCovidNet is applied to the data set, and these have shown signification performance in the case of binary classification and multi-class classification. During the multi-class classification, the model has shown an average accuracy 98.97% for the detection of COVID-19, whereas in a multi-class classification model has achieved an average accuracy of 87.868% during the classification of COVID-19, no detection and Pneumonia. Research limitations/implications One of the significant limitations of this work is that a limited number of chest X-ray images were used. It is observed that patients related to COVID-19 are increasing rapidly. In the future, the model on the larger data set which can be generated from the local hospitals will be implemented, and how the model is performing on the same will be checked. Originality/value Deep learning technology has made significant changes in the field of AI by generating good results, especially in pattern recognition. A conventional CNN structure includes a convolution layer that extracts characteristics from the input using the filters it applies, a pooling layer that reduces calculation efficiency and the neural network's completely connected layer. A CNN model is created by integrating one or more of these layers, and its internal parameters are modified to accomplish a specific mission, such as classification or object recognition. A typical CNN structure has a convolution layer that extracts features from the input with the filters it applies, a pooling layer to reduce the size for computational performance and a fully connected layer, which is a neural network. A CNN model is created by combining one or more such layers, and its internal parameters are adjusted to accomplish a particular task, such as classification or object recognition.


Sign in / Sign up

Export Citation Format

Share Document