Single Image Super-Resolution Based on Sparse Representation with Adaptive Dictionary Selection
Sparse representation theory has attracted much attention, and has been successfully used in image super-resolution (SR) reconstruction. However, it could only provide the local prior of image patches. Field of experts (FoE) is a way to develop the generic and expressive prior of the whole image. The algorithm proposed in this paper uses the FoE model as the global constraint of SR reconstruction problem to pre-process the low-resolution image. Since a single dictionary could not accurately represent different types of image patches, our algorithm classifies the sample patches composed of pre-processed image and high-resolution image, obtains the sub-dictionaries by training, and adaptively selects the most appropriate sub-dictionary for reconstruction according to the pyramid histogram of oriented gradients feature of image patches. Furthermore, in order to reduce the computational complexity, our algorithm makes use of edge detection, and only applies SR reconstruction based on sparse representation to the edge patches of the test image. Nonedge patches are directly replaced by the pre-processing results of FoE model. Experimental results show that our algorithm can effectively guarantee the quality of the reconstructed image, and reduce the computation time to a certain extent.