real traffic
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 121)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Chunling Tu ◽  
Shengzhi Du

<span>Vehicle and vehicle license detection obtained incredible achievements during recent years that are also popularly used in real traffic scenarios, such as intelligent traffic monitoring systems, auto parking systems, and vehicle services. Computer vision attracted much attention in vehicle and vehicle license detection, benefit from image processing and machine learning technologies. However, the existing methods still have some issues with vehicle and vehicle license plate recognition, especially in a complex environment. In this paper, we propose a multivehicle detection and license plate recognition system based on a hierarchical region convolutional neural network (RCNN). Firstly, a higher level of RCNN is employed to extract vehicles from the original images or video frames. Secondly, the regions of the detected vehicles are input to a lower level (smaller) RCNN to detect the license plate. Thirdly, the detected license plate is split into single numbers. Finally, the individual numbers are recognized by an even smaller RCNN. The experiments on the real traffic database validated the proposed method. Compared with the commonly used all-in-one deep learning structure, the proposed hierarchical method deals with the license plate recognition task in multiple levels for sub-tasks, which enables the modification of network size and structure according to the complexity of sub-tasks. Therefore, the computation load is reduced.</span>


Author(s):  
baraa I. Farhan ◽  
Ammar D.Jasim

The use of deep learning in various models is a powerful tool in detecting IoT attacks, identifying new types of intrusion to access a better secure network. Need to developing an intrusion detection system to detect and classify attacks in appropriate time and automated manner increases especially due to the use of IoT and the nature of its data that causes increasing in attacks. Malicious attacks are continuously changing, that cause new attacks. In this paper we present a survey about the detection of anomalies, thus intrusion detection by distinguishing between normal behavior and malicious behavior while analyzing network traffic to discover new attacks. This paper surveys previous researches by evaluating their performance through two categories of new datasets of real traffic are (CSE-CIC-IDS2018 dataset, Bot-IoT dataset). To evaluate the performance we show accuracy measurement for detect intrusion in different systems.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Ying Zhuo ◽  
Lan Yan ◽  
Wenbo Zheng ◽  
Yutian Zhang ◽  
Chao Gou

Autonomous driving has become a prevalent research topic in recent years, arousing the attention of many academic universities and commercial companies. As human drivers rely on visual information to discern road conditions and make driving decisions, autonomous driving calls for vision systems such as vehicle detection models. These vision models require a large amount of labeled data while collecting and annotating the real traffic data are time-consuming and costly. Therefore, we present a novel vehicle detection framework based on the parallel vision to tackle the above issue, using the specially designed virtual data to help train the vehicle detection model. We also propose a method to construct large-scale artificial scenes and generate the virtual data for the vision-based autonomous driving schemes. Experimental results verify the effectiveness of our proposed framework, demonstrating that the combination of virtual and real data has better performance for training the vehicle detection model than the only use of real data.


2021 ◽  
pp. 1-12
Author(s):  
Lauro Reyes-Cocoletzi ◽  
Ivan Olmos-Pineda ◽  
J. Arturo Olvera-Lopez

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.


Author(s):  
Kaidi Zhao ◽  
Mingyue Xu ◽  
Zhengzhuang Yang ◽  
Dingding Han

Traffic flow forecasting is the basic challenge in intelligent transportation system (ITS). The key problem is to improve the accuracy of model and capture the dynamic temporal and nonlinear spatial dependence. Using real data is one of the ways to improve the spatial–temporal correlation modeling accuracy. However, real traffic flow data are not strictly periodic because of some random factors, which may lead to some deviations. This study focuses on capturing and modeling the temporal perturbation in real periodic data and we propose a spatial–temporal similar graph attention network (STSGAN) to address this problem. In STSGAN, the spatial–temporal graph convolution module is to capture local spatial–temporal relationship in traffic data, and the periodic similar attention module is to treat the nonlinear traffic flow information. Experiments on three datasets demonstrate that our model is best among all methods.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7979
Author(s):  
Wojciech Adamski ◽  
Krzysztof Brzozowski ◽  
Jacek Nowakowski ◽  
Tomasz Praszkiewicz ◽  
Tomasz Knefel

Appropriate driving technique, in compliance with eco-driving principles, remains an effective method to reduce fuel consumption. The selection of the correct gear is one of the pertinent factors when driving a car with a manual gearbox. In this study we have analyzed fuel overconsumption based on data recorded in real traffic conditions for vehicles driven by experienced drivers, using a black-box model. It was found that the total share of trip time with a lower than optimal gear selected amounted to from c.a. 3% for motorway driving up to 28% on rural roads. The mean fuel consumption reduction factor (following selection of the next gear up) amounted to from c.a. 2% up to 20%, depending on the selected gear and type of driving. Unfortunately, the potential for reduction of fuel consumption is not evenly distributed over the entire operating area of the engine. Thus, the cumulative reduction of fuel consumption, due to selection of the optimal gear, amounted to from c.a. 0.2% for motorway driving up to 3–6%, for urban and rural driving. It was shown that due to the selection of the appropriate gear, there still exists a real possibility of reduction of fuel consumption, even in the case of experienced drivers.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhong Li ◽  
Hao Shao

With the increasing number of intelligent connected vehicles, the problem of scarcity of communication resources has become increasingly obvious. It is a practical issue with important significance to explore a real-time and reliable dynamic spectrum allocation scheme for the vehicle users, while improving the utilization of the available spectrum. However, previous studies have problems such as local optimum, complex parameter setting, learning speed, and poor convergence. Thus, in this paper, we propose a cognitive spectrum allocation method based on traveling state priority and scenario simulation in IoV, named Finder-MCTS. The proposed method integrates offline learning with online search. This method mainly consists of two stages. Initially, Finder-MCTS gives the allocation priority of different vehicle users based on the vehicle’s local driving status and global communication status. Furthermore, Finder-MCTS can search for the approximate optimal allocation solutions quickly online according to the priority and the scenario simulation, while with the offline deep neural network-based environmental state predictor. In the experiment, we use SUMO to simulate the real traffic flows. Numerical results show that our proposed Finder-MCTS has 36.47%, 18.24%, and 9.00% improvement on average than other popular methods in convergence time, link capacity, and channel utilization, respectively. In addition, we verified the effectiveness and advantages of Finder-MCTS compared with two MCTS algorithms’ variations.


2021 ◽  
Vol 11 (21) ◽  
pp. 10166
Author(s):  
Leonard Stepien ◽  
Silvia Thal ◽  
Roman Henze ◽  
Hiroki Nakamura ◽  
Jacobo Antona-Makoshi ◽  
...  

Comprehensive safety evaluation methodologies for automated driving systems that account for the large complexity real traffic are currently being developed. This work adopts a scenario-based safety evaluation approach and aims at investigating an advanced methodology to generate test cases by applying heuristics to naturalistic driving data. The targeted requirements of the generated test cases are severity, exposure, and realism. The methodology starts with the extraction of scenarios from the data and their split in two subsets—containing the relatively more critical scenarios and, respectively, the normal driving scenarios. Each subset is analysed separately, in regard to the parameter value distributions and occurrence of dependencies. Subsequently, a heuristic search-based approach is applied to generate test cases. The resulting test cases clearly discriminate between safety critical and normal driving scenarios, with the latter covering a wider spectrum than the former. The verification of the generated test cases proves that the proposed methodology properly accounts for both severity and exposure in the test case generation process. Overall, the current study contributes to fill a gap concerning the specific applicable methodologies capable of accounting for both severity and exposure and calls for further research to prove its applicability in more complex environments and scenarios.


2021 ◽  
Vol 11 (21) ◽  
pp. 9914
Author(s):  
Aleksandra Romanowska ◽  
Kazimierz Jamroz

The fundamental relationship of traffic flow and bivariate relations between speed and flow, speed and density, and flow and density are of great importance in transportation engineering. Fundamental relationship models may be applied to assess and forecast traffic conditions at uninterrupted traffic flow facilities. The objective of the article was to analyze and compare existing models of the fundamental relationship. To that end, we proposed a universal and quantitative method for assessing models of the fundamental relationship based on real traffic data from a Polish expressway. The proposed methodology seeks to address the problem of finding the best deterministic model to describe the empirical relationship between fundamental traffic flow parameters: average speed, flow, and density based on simple and transparent criteria. Both single and multi-regime models were considered: a total of 17 models. For the given data, the results helped to identify the best performing models that meet the boundary conditions and ensure simplicity, empirical accuracy, and good estimation of traffic flow parameters.


2021 ◽  
Author(s):  
Shulian Zhao ◽  
ke wang ◽  
Yan Long ◽  
Junlan Chen

Abstract At present, autonomous vehicle technologies (AVTs) have been extensively researched and developed, but there is less research focused on the adaptability of current AVTs to the real traffic. Whether AVTs can be competent in the real driving environment is still an issue. To fill the gap, this paper first collected a great amount of driving data from more than 60 Chinese drivers and established a big natural driving database covering millions of kilometers, all-weather and all working conditions. Then, using the dataset, 3044 cut-in scenarios related to automatic driving were extracted and their characteristics were analyzed based on the cluster method. According to the distribution of cut-in behavior, the related technical requirements of autonomous vehicles were clearly detailed, analyzed, and evaluated from the perspectives of perception, intelligent networking, and motion planning. Finally, from the comparative analysis, we draw the adaptation conclusions of the current AVTs to the real traffic and point out the unsolved challenges. Our conclusions could be very useful for motor corporations and researchers to draw their attention to the complexity of the Chinese traffic environment, and for policy-makers to think about making new AVTs policies in anticipation of the advent of future autonomous vehicles.


Sign in / Sign up

Export Citation Format

Share Document