THE EFFECT OF INKDOTS FOR TWO-DIMENSIONAL AUTOMATA

Author(s):  
AKIRA ITO ◽  
KATSUSHI INOUE ◽  
ITSUO TAKANAMI ◽  
YUE WANG

Recently, related to the open problem of whether deterministic and nondeterministic space (especially lower-level) complexity classes are separated, the inkdot Turing machine was introduced. An inkdot machine is a conventional Turing machine capable of dropping an inkdot on a given input tape for a landmark, but not to pick it up nor further erase it. In this paper, we introduce a finite state version of the inkdot machine as a weak recognizer of the properties of digital pictures, rather than a Turing machine supplied with a one-dimensional working tape. We first investigate the sufficient spaces of three-way Turing machines to simulate two-dimensional inkdot finite automaton, as preliminary results. Next, we investigate the basic properties of two-dimensional inkdot automaton, i.e. the hierarchy based on the number of inkdots and the relationship of two-dimensional inkdot automata to other conventional two-dimensional automata. Finally, we investigate the recognizability of connected pictures of two-dimensional inkdot finite machines.

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Tao Wu ◽  
Zhenghong Deng ◽  
Qingyue Gu ◽  
Jiwei Xu

We explore the estimation of a two-dimensional (2D) nonsymmetric coherently distributed (CD) source using L-shaped arrays. Compared with a symmetric source, the modeling and estimation of a nonsymmetric source are more practical. A nonsymmetric CD source is established through modeling the deterministic angular signal distribution function as a summation of Gaussian probability density functions. Parameter estimation of the nonsymmetric distributed source is proposed under an expectation maximization (EM) framework. The proposed EM iterative calculation contains three steps in each cycle. Firstly, the nominal azimuth angles and nominal elevation angles of Gaussian components in the nonsymmetric source are obtained from the relationship of rotational invariance matrices. Then, angular spreads can be solved through one-dimensional (1D) searching based on nominal angles. Finally, the powers of Gaussian components are obtained by solving least-squares estimators. Simulations are conducted to verify the effectiveness of the nonsymmetric CD model and estimation technique.


1971 ◽  
Vol 15 (01) ◽  
pp. 11-21 ◽  
Author(s):  
E. O. Tuck ◽  
J. I. Collins ◽  
W. H. Wells

The one dimensional and two dimensional spectra of a ship wave pattern have been derived. It is shown that the spectra have distinct signatures containing information on speed, direction, shape, size, and wave resistance of the ship. The speed and direction are readily determined but the relationship of the spectrum to other ship characteristics requires further investigation. Some examples of detailed wave patterns in the wake of a parabolic sided ship have been computed.


Author(s):  
TOKIO OKAZAKI ◽  
KATSUSHI INOUE ◽  
AKIRA ITO ◽  
YUE WANG

This paper introduces a three-way two-dimensional probabilistic Turing machine (tr2-ptm), and investigates several properties of the machine. The tr2-ptm is a two-dimensional probabilistic Turing machine (2-ptm) whose input head can only move left, right, or down, but not up. Let 2-ptms (resp. tr2-ptms) denote a 2-ptm (resp. tr2-ptm) whose input tape is restricted to square ones, and let 2-PTMs(S(n)) (resp. TR2-PTMs(S(n))) denote the class of sets recognized by S(n) space-bounded 2-ptms's (resp. tr2-ptms's) with error probability less than ½, where S(n): N→N is a function of one variable n (= the side-length of input tapes). Let TR2-PTM(L(m,n)) denote the class of sets recognized by L(m,n) space-bounded tr2-ptm's with error probability less than ½, where L(m,n): N2→N is a function of two variables m (= the number of rows of input tapes) and n (= the number of columns of input tapes). The main results of this paper are: (1) 2-NFAs - TR2-PTMs(S(n))≠ϕ for any S(n)=o(log n), where 2-NFAs denotes the class of sets of square tapes accepted by two-dimensional nondeterministic finite automata, (2) TR2-PTMsS(n)[Formula: see text]2-PTMs(S(n)) for any S(n)=o(log n), and (3) for any function g(n)=o(log n) (resp. g(n)=o(log n/log log n)) and any monotonic nondecreasing function f(m) which can be constructed by some one-dimensional deterministic Turing machine, TR2-PTM(f(m)+g(n)) (resp. TR2-PTM(f(m)×g(n))) is not closed under column catenation, column closure, and projection. Additionally, we show that two-dimensional nondeterministic finite automata are equivalent to two-dimensional probabilistic finite automata with one-sided error in accepting power.


Author(s):  
KENICHI MORITA ◽  
YASUNORI YAMAMOTO ◽  
KAZUHIRO SUGATA

Two kinds of three-way isometric array grammars arc proposed as subclasses of an isometric monotonic array grammar. They are a three-way horizontally context-sensitive array grammar (3HCSAG) and a three-way immediately terminating array grammar (3ITAG). In these three-way grammars, patterns of symbols can grow only in the leftward, rightward and downward directions. We show that their generating abilities of rectangular languages are precisely characterized by some kinds of three-way two-dimensional Turing machines or related acceptors. In this paper. the following results are proved. First, 3HCSAG is characterized by a nondeterministic two-dimensional three-way Turing machine with space-bound n (n is the width of a rectangular input) and a nondeterministic one-way parallel/sequential array acceptor. Second, 3ITAG is characterized by a nondeterministic two-dimensional three-way real-time (or linear-time) restricted Turing machine, a nondeterministic one-dimensional bounded cellular acceptor and a nondeterministic two-dimensional one-line tessellation acceptor.


2016 ◽  
Vol 24 (2) ◽  
pp. 245-264
Author(s):  
Andrew P. Wilson

One of the grand scenes of the Passion narratives can be found in John’s Gospel where Pilate, presenting Jesus to the people, proclaims “Behold the man”: “Ecce Homo.” But what exactly does Pilate mean when he asks the reader to “Behold”? This paper takes as its point of departure a roughly drawn picture of Jesus in the “Ecce Homo” tradition and explores the relationship of this picture to its referent in John’s Gospel, via its capacity as kitsch devotional art. Contemporary scholarship on kitsch focuses on what kitsch does, or how it functions, rather than assessing what it is. From this perspective, when “beholding” is understood not for what it reveals but for what it does, John’s scene takes on a very different significance. It becomes a scene that breaks down traditional divisions between big and small stories, subject and object as well as text and context. A kitsch perspective opens up possibilities for locating John’s narrative in unexpected places and experiences. Rather than being a two-dimensional departure from the grandeur of John’s trial scene, kitsch “art” actually provides a lens through which the themes and dynamics of the narrative can be re-viewed with an expansiveness somewhat lacking from more traditional commentary.



Algorithms ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 122
Author(s):  
Arne Meier

In this paper, we study the relationship of parameterized enumeration complexity classes defined by Creignou et al. (MFCS 2013). Specifically, we introduce two hierarchies (IncFPTa and CapIncFPTa) of enumeration complexity classes for incremental fpt-time in terms of exponent slices and show how they interleave. Furthermore, we define several parameterized function classes and, in particular, introduce the parameterized counterpart of the class of nondeterministic multivalued functions with values that are polynomially verifiable and guaranteed to exist, TFNP, known from Megiddo and Papadimitriou (TCS 1991). We show that this class TF(para-NP), the restriction of the function variant of NP to total functions, collapsing to F(FPT), the function variant of FPT, is equivalent to the result that OutputFPT coincides with IncFPT. In addition, these collapses are shown to be equivalent to TFNP = FP, and also equivalent to P equals NP intersected with coNP. Finally, we show that these two collapses are equivalent to the collapse of IncP and OutputP in the classical setting. These results are the first direct connections of collapses in parameterized enumeration complexity to collapses in classical enumeration complexity, parameterized function complexity, classical function complexity, and computational complexity theory.


Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Geophysics ◽  
1976 ◽  
Vol 41 (4) ◽  
pp. 766-770 ◽  
Author(s):  
F. E. M. Lilley

Observed magnetotelluric data are often transformed to the frequency domain and expressed as the relationship [Formula: see text]where [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] represent electric and magnetic components measured along two orthogonal axes (in this paper, for simplicity, to be north and east, respectively). The elements [Formula: see text] comprise the magnetotelluric impedance tensor, and they are generally complex due to phase differences between the electric and magnetic fields. All quantities in equation (1) are frequency dependent. For the special case of “two‐dimensional” geology (where structure can be described as having a certain strike direction along which it does not vary), [Formula: see text] with [Formula: see text]. For the special case of “one‐dimensional” geology (where structure varies with depth only, as if horizontally layered), [Formula: see text] and [Formula: see text].


Author(s):  
Serge Miguet ◽  
Annick Montanvert ◽  
P. S. P. Wang

Several nonclosure properties of each class of sets accepted by two-dimensional alternating one-marker automata, alternating one-marker automata with only universal states, nondeterministic one-marker automata, deterministic one-marker automata, alternating finite automata, and alternating finite automata with only universal states are shown. To do this, we first establish the upper bounds of the working space used by "three-way" alternating Turing machines with only universal states to simulate those "four-way" non-storage machines. These bounds provide us a simplified and unified proof method for the whole variants of one-marker and/or alternating finite state machine, without directly analyzing the complex behavior of the individual four-way machine on two-dimensional rectangular input tapes. We also summarize the known closure properties including Boolean closures for all the variants of two-dimensional alternating one-marker automata.


Author(s):  
TOKIO OKAZAKI ◽  
KATSUSHI INOUE ◽  
AKIRA ITO ◽  
YUE WANG

This paper investigates closure property of the classes of sets accepted by space-bounded two-dimensional alternating Turing machines (2-atm's) and space-bounded two-dimensional alternating pushdown automata (2-apda's), and space-bounded two-dimensional alternating counter automata (2-aca's). Let L(m, n): N2 → N (N denotes the set of all positive integers) be a function with two variables m (= the number of rows of input tapes) and n (= the number of columns of input tapes). We show that (i) for any function f(m) = o( log m) (resp. f(m) = o( log m/ log log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional Turing machine (2-Tm) (resp. two-dimensional pushdown automaton (2-pda)), the class of sets accepted by L(m,n) space-bounded 2-atm's (2-apda's) is not closed under row catenation, row + or projection, and (ii) for any function f(m) = o(m/ log ) (resp. for any function f(m) such that log f(m) = o( log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional counter automaton (2-ca), the class of sets accepted by L(m, n) space-bounded 2-aca's is not closed under row catenation, row + or projection, where L(m, n) = f(m) + g(n) (resp. L(m, n) = f(m) × g(n)).


Sign in / Sign up

Export Citation Format

Share Document