pushdown automata
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 43)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol Volume 18, Issue 1 ◽  
Author(s):  
Karoliina Lehtinen ◽  
Martin Zimmermann

We introduce good-for-games $\omega$-pushdown automata ($\omega$-GFG-PDA). These are automata whose nondeterminism can be resolved based on the input processed so far. Good-for-gameness enables automata to be composed with games, trees, and other automata, applications which otherwise require deterministic automata. Our main results are that $\omega$-GFG-PDA are more expressive than deterministic $\omega$- pushdown automata and that solving infinite games with winning conditions specified by $\omega$-GFG-PDA is EXPTIME-complete. Thus, we have identified a new class of $\omega$-contextfree winning conditions for which solving games is decidable. It follows that the universality problem for $\omega$-GFG-PDA is in EXPTIME as well. Moreover, we study closure properties of the class of languages recognized by $\omega$-GFG- PDA and decidability of good-for-gameness of $\omega$-pushdown automata and languages. Finally, we compare $\omega$-GFG-PDA to $\omega$-visibly PDA, study the resources necessary to resolve the nondeterminism in $\omega$-GFG-PDA, and prove that the parity index hierarchy for $\omega$-GFG-PDA is infinite.


2021 ◽  
Vol 58 (4) ◽  
pp. 335-356
Author(s):  
Sebastian Jakobi ◽  
Katja Meckel ◽  
Carlo Mereghetti ◽  
Beatrice Palano

AbstractWe consider the notion of a constant length queue automaton—i.e., a traditional queue automaton with a built-in constant limit on the length of its queue—as a formalism for representing regular languages. We show that the descriptional power of constant length queue automata greatly outperforms that of traditional finite state automata, of constant height pushdown automata, and of straight line programs for regular expressions, by providing optimal exponential and double-exponential size gaps. Moreover, we prove that constant height pushdown automata can be simulated by constant length queue automata paying only by a linear size increase, and that removing nondeterminism in constant length queue automata requires an optimal exponential size blow-up, against the optimal double-exponential cost for determinizing constant height pushdown automata. Finally, we investigate the size cost of implementing Boolean language operations on deterministic and nondeterministic constant length queue automata.


2021 ◽  
Vol 22 (3) ◽  
pp. 1-51
Author(s):  
Christopher H. Broadbent ◽  
Arnaud Carayol ◽  
Matthew Hague ◽  
Andrzej S. Murawski ◽  
C.-H. Luke Ong ◽  
...  

This article studies a large class of two-player perfect-information turn-based parity games on infinite graphs, namely, those generated by collapsible pushdown automata. The main motivation for studying these games comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both models being equi-expressive for generating infinite trees. Our main result is to establish the decidability of such games and to provide an effective representation of the winning region as well as of a winning strategy. Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees generated by collapsible pushdown automata/recursion schemes.


2021 ◽  
Vol 52 (2) ◽  
pp. 7-9
Author(s):  
Erick Galinkin

Computability theory forms the foundation for much of theoretical computer science. Many of our great unsolved questions stem from the need to understand what problems can even be solved. The greatest question of computer science, P vs. NP, even sidesteps this entirely, asking instead how efficiently we can find solutions for the problems that we know are solvable. For many students both at the undergraduate and graduate level, a first exposure to computability theory follows a standard sequence on data structures and algorithms and students often marvel at the first results they see on undecidability - how could we possibly prove that we can never solve a problem? This book, in contrast with other books that are often used as first exposures to computability, finite automata, Turing machines, and the like, focuses very specifically on the notion of what is computable and how computability theory, as a science unto itself, fits into the grander scheme. The book is appropriate for advanced undergraduates and beginning graduate students in computer science or mathematics who are interested in theoretical computer science. Robič sidesteps the standard theoretical computer science progression - understanding finite automata and pushdown automata before moving into Turing machines - by setting the stage with Hilbert's program and mathematical prerequisites before introducing the Turing machine absent the usual prerequisites, and then introducing advanced topics often absent in introductory texts. Most chapters are relatively short and contain problem sets, making it appropriate for both a classroom text or for self-study.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-37
Author(s):  
Christopher H. Broadbent ◽  
Arnaud Carayol ◽  
C.-H. Luke Ong ◽  
Olivier Serre

This article studies the logical properties of a very general class of infinite ranked trees, namely, those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal -calculus, three main problems: model-checking, logical reflection (a.k.a. global model-checking, that asks for a finite description of the set of elements for which a formula holds), and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems, we provide an effective solution. This is obtained, thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.


2021 ◽  
Vol 180 (1-2) ◽  
pp. 1-28
Author(s):  
Henning Fernau ◽  
Martin Kutrib ◽  
Matthias Wendlandt

We study the computational and descriptional complexity of self-verifying pushdown automata (SVPDA) and self-verifying realtime queue automata (SVRQA). A self-verifying automaton is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes, no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the answers given must not be contradictory. We show that SVPDA and SVRQA are automata characterizations of so-called complementation kernels, that is, context-free or realtime nondeterministic queue automaton languages whose complement is also context free or accepted by a realtime nondeterministic queue automaton. So, the families of languages accepted by SVPDA and SVRQA are strictly between the families of deterministic and nondeterministic languages. Closure properties and various decidability problems are considered. For example, it is shown that it is not semidecidable whether a given SVPDA or SVRQA can be made self-verifying. Moreover, we study descriptional complexity aspects of these machines. It turns out that the size trade-offs between nondeterministic and self-verifying as well as between self-verifying and deterministic automata are non-recursive. That is, one can choose an arbitrarily large recursive function f, but the gain in economy of description eventually exceeds f when changing from the former system to the latter.


2021 ◽  
Vol 117 ◽  
pp. 202-241
Author(s):  
Lorenzo Clemente ◽  
Sławomir Lasota
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document