Monaural Musical Octave Sound Separation Using Relaxed Extended Common Amplitude Modulation

Author(s):  
Yukai Gong ◽  
Longquan Dai

Monaural music sound separation isolates individual instrument sources from a mono-channel polyphonic mixture. The primary challenge is to separate the source partials overlapped in time-frequency regions, especially for the full overlapping cases that at least one source does not have any nonoverlapping partial. Due to the lack of effective methods to separate the sources with full overlapping partials, this paper put forward a relaxed extended common amplitude modulation (RECAM) approach to deal with the octave sound separation, one of the most difficult cases. Our strategy uses a multi-band co-processing way for each short-time partial wave segment. Extensive experiments are conducted on octave mixture samples drawn from the Iowa University Musical Instrument Database. Results confirm that our RECAM achieves the best separation performance. For nonvibrato and vibrato mixtures, the average improvement of RECAM in each measure exceeds [Formula: see text]dB and [Formula: see text]dB, respectively.

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Han-Yun Chen ◽  
Ching-Hung Lee

This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Asahi Sato ◽  
Toshihiko Masui ◽  
Akitada Yogo ◽  
Takashi Ito ◽  
Keiko Hirakawa ◽  
...  

AbstractAlthough serum markers such as carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19-9) have been widely used in screening for pancreatic cancer (PC), their sensitivity and specificity are unsatisfactory. Recently, a novel tool of analyzing serum using the short-time Fourier transform (STFT) of free induction decays (FIDs) obtained by 1H-NMR has been introduced. We for the first time evaluated the utility of this technology as a diagnostic tool for PC. Serum was obtained from PC patients before starting any treatments. Samples taken from individuals with benign diseases or donors for liver transplantation were obtained as controls. Serum samples from both groups underwent 1H-NMR and STFT of FIDs. STFT data were analyzed by partial least squares discriminant analysis (PLS-DA) to clarify whether differences were apparent between groups. As a result, PLS-DA score plots indicated that STFT of FIDs enabled effective classification of groups with and without PC. Additionally, in a subgroup of PC, long-term survivors (≥ 2 years) could be discriminated from short-term survivors (< 2 years), regardless of pathologic stage or CEA or CA19-9 levels. In conclusion, STFT of FIDs obtained from 1H-NMR have a potential to be a diagnostic and prognostic tool of PC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Wei ◽  
Xuwen Jing ◽  
Bingqiang Li ◽  
Chao Kang ◽  
Zhenhuan Dou ◽  
...  

AbstractIn recent years, considerable attention has been paid in time–frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT–SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT–SSET method.


2012 ◽  
Vol 433-440 ◽  
pp. 2611-2618
Author(s):  
Zhen Hua Tian ◽  
Hong Yuan Li ◽  
Hong Xu

The propagation of scattering Lamb wave in plate was simulated using transient dynamic analysis in ANSYS. In order to extract the characteristic information of received signal for damage identification, the short time Fourier transform based on time-frequency analysis was utilized, and then the energy distribution and envelop of received signal were obtained. Based on the displacement contour of simulation and energy distribution, the propagation of scattering wave in plate with a through hole was examined. Also, a mathematic relationship between damage location and scattering signal was developed, with the help of wave propagation path through actuator, damage and sensor. A nonlinear optimization method was applied on the mathematic relationship to obtain the damage location. The damage identification method using scattering Lamb wave was therefore established.


2017 ◽  
Vol 123 (2) ◽  
pp. 344-351 ◽  
Author(s):  
Luiz Eduardo Virgilio Silva ◽  
Renata Maria Lataro ◽  
Jaci Airton Castania ◽  
Carlos Alberto Aguiar Silva ◽  
Helio Cesar Salgado ◽  
...  

Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550021 ◽  
Author(s):  
M. A. Al-Manie ◽  
W. J. Wang

Due to the advantages offered by the S-transform (ST) distribution, it has been recently successfully implemented for various applications such as seismic and image processing. The desirable properties of the ST include a globally referenced phase as the case with the short time Fourier transform (STFT) while offering a higher spectral resolution as the wavelet transform (WT). However, this estimator suffers from some inherent disadvantages seen as poor energy concentration with higher frequencies. In order to improve the performance of the distribution, a modification to the existing technique is proposed. Additional parameters are proposed to control the window's width which can greatly enhance the signal representation in the time–frequency plane. The new estimator's performance is evaluated using synthetic signals as well as biomedical data. The required features of the ST which include invertability and phase information are still preserved.


Sign in / Sign up

Export Citation Format

Share Document