scholarly journals INHERENT GLOBAL STABILIZATION OF UNSTABLE LOCAL BEHAVIOR IN COUPLED MAP LATTICES

2005 ◽  
Vol 15 (05) ◽  
pp. 1665-1676 ◽  
Author(s):  
HARALD ATMANSPACHER ◽  
HERBERT SCHEINGRABER

The behavior of two-dimensional coupled map lattices is studied with respect to the global stabilization of unstable local fixed points without external control. It is numerically shown under which circumstances such inherent global stabilization can be achieved for both synchronous and asynchronous updating. Two necessary conditions for inherent global stabilization are derived analytically.

2022 ◽  
Author(s):  
Wenhao Yan ◽  
Zijing Jiang ◽  
Qun Ding

Abstract The physical implementation of continuoustime memristor makes it widely used in chaotic circuits, whereas discrete-time memristor has not received much attention. In this paper, the backward-Euler method is used to discretize TiO2 memristor model, and the discretized model also meets the three fingerprinter characteristics of the generalized memristor. The short period phenomenon and uneven output distribution of one-dimensional chaotic systems affect their applications in some fields, so it is necessary to improve the dynamic characteristics of one-dimensional chaotic systems. In this paper, a two-dimensional discrete-time memristor model is obtained by linear coupling the proposed TiO2 memristor model and one-dimensional chaotic systems. Since the two-dimensional model has infinite fixed points, the stability of these fixed points depends on the coupling parameters and the initial state of the discrete TiO2 memristor model. Furthermore, the dynamic characteristics of one-dimensional chaotic systems can be enhanced by the proposed method. Finally, we apply the generated chaotic sequence to secure communication.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


2021 ◽  
Vol 3 (1) ◽  
pp. 13-34
Author(s):  
Robert J Marks II

Continually expanding periodically translated kernels on the two dimensional grid can yield interesting, beau- tiful and even familiar patterns. For example, expand- ing circular pillbox shaped kernels on a hexagonal grid, adding when there is overlap, yields patterns includ- ing maximally packed circles and a triquetra-type three petal structure used to represent the trinity in Chris- tianity. Continued expansion yields the flower-of-life used extensively in art and architecture. Additional expansion yields an even more interesting emerging ef- florescence of periodic functions. Example images are given for the case of circular pillbox and circular cone shaped kernels. Using Fourier analysis, fundamental properties of these patterns are analyzed. As a func- tion of expansion, some effloresced functions asymp- totically approach fixed points or limit cycles. Most interesting is the case where the efflorescence never repeats. Video links are provided for viewing efflores- cence in real time.


1992 ◽  
Vol 07 (24) ◽  
pp. 2215-2222 ◽  
Author(s):  
TOSHIO NAKATSU ◽  
YUJI SUGAWARA

We study the twisted version of the supersymmetric G/T = SU (n)/ U (1)⊗(n−1) gauged Wess-Zumino-Witten model. By studying its fixed points under BRST transformation this model is shown to be reduced to a simple topological Field theory, that is, the topological matter system in the K. Li's theory of two-dimensional gravity for the case of n = 2, and its generalization for n ≥ 3.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150105
Author(s):  
Yongjian Liu ◽  
Chunbiao Li ◽  
Aimin Liu

Little is known about bifurcations in two-dimensional (2D) differential systems from the viewpoint of Kosambi–Cartan–Chern (KCC) theory. Based on the KCC geometric invariants, three types of static bifurcations in 2D differential systems, i.e. saddle-node bifurcation, transcritical bifurcation, and pitchfork bifurcation, are discussed in this paper. The dynamics far from fixed points of the systems generating bifurcations are characterized by the deviation curvature and nonlinear connection. In the nonequilibrium region, the nonlinear stability of systems is not simple but involves alternation between stability and instability, even though systems are invariably Jacobi-unstable. The results also indicate that the dynamics in the nonequilibrium region are node-like for three typical static bifurcations.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050053 ◽  
Author(s):  
Dario Zappalà

The presence of isotropic Lifshitz points for a [Formula: see text]-symmetric scalar theory is investigated with the help of the Functional Renormalization Group. In particular, at the supposed lower critical dimension [Formula: see text], evidence for a continuous line of fixed points is found for the [Formula: see text] theory, and the observed structure presents clear similarities with the properties observed in the two-dimensional Berezinskii–Kosterlitz–Thouless phase.


2011 ◽  
Vol 21 (10) ◽  
pp. 3043-3046 ◽  
Author(s):  
SERGEY STEPANOV

A two-mass oscillator with one mass lying on the driving belt with dry Coulomb friction is considered. A numerical method for finding all limit cycles and their parametric investigation, based on the analysis of fixed points of a two-dimensional map, is suggested. As successive points for the map we chose points of friction transferred from stick mode to slip mode. These transfers are defined by two equalities and yield a two-dimensional map, in contrast to three-dimensional maps that we can construct for regularized continuous dry friction laws.


1997 ◽  
Vol 56 (3) ◽  
pp. 2568-2572 ◽  
Author(s):  
Yu Jiang ◽  
A. Antillón ◽  
P. Parmananda ◽  
J. Escalona

2012 ◽  
Vol 580 ◽  
pp. 411-414
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

Through generalizing the method of a decay analysis technique determining the interior solution developed by Gregory and Wan, a set of necessary conditions on the end-data of torsional circular shaft in two-dimensional dodecagonal quasicrystals (2D dodecagonal QCs) for the existence of a rapidly decaying solution is established. By accurate solutions for auxiliary regular state, using the reciprocal theorem, these necessary conditions for the end-data to induce only a decaying elastostatic state (boundary layer solution) will be translated into appropriate boundary conditions for the torsional circular shaft in 2D dodecagonal QCs. The results of the present paper enable us to establish a set of boundary conditions.


1996 ◽  
Vol 126 (5) ◽  
pp. 1055-1065 ◽  
Author(s):  
Pablo Pedregal

We explore some necessary conditions for quasiconvexity in an attempt to show that rank-one convexity does not imply quasiconvexity when the target space for deformations is two- dimensional. An interesting construction is presented, showing how rank-one directions may fit with each other, making the task harder than in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document