scholarly journals Effect of Nonlinear Dissipation on the Basin Boundaries of a Driven Two-Well Modified Rayleigh–Duffing Oscillator

2015 ◽  
Vol 25 (02) ◽  
pp. 1550024 ◽  
Author(s):  
C. H. Miwadinou ◽  
A. V. Monwanou ◽  
J. B. Chabi Orou

This paper considers the effect of nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh–Duffing oscillator where pure cubic, unpure cubic, pure quadratic and unpure quadratic nonlinearities are considered. By analyzing the potential, an analytic expression is found for the homoclinic orbit. The Melnikov criterion is used to examine a global homoclinic bifurcation and transition to chaos. Unpure quadratic parameter and parametric excitation amplitude effects are found on the critical Melnikov amplitude μ cr . Finally, the phase space of initial conditions is carefully examined in order to analyze the effect of the nonlinear damping, and particularly how the basin boundaries become fractalized.

2007 ◽  
Vol 14 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Marek Borowiec ◽  
Grzegorz Litak ◽  
Arkadiusz Syta

We have applied the Melnikov criterion to examine a global homoclinic bifurcation and transition to chaos in a case of the Duffing system with nonlinear fractional damping and external excitation. Using perturbation methods we have found a critical forcing amplitude above which the system may behave chaotically. The results have been verified by numerical simulations using standard nonlinear tools as Poincare maps and a Lyapunov exponent. Above the critical Melnikov amplitude μ_c, which a sufficient condition of a global homoclinic bifurcation, we have observed the region with a transient chaotic motion.


1999 ◽  
Vol 09 (04) ◽  
pp. 735-744 ◽  
Author(s):  
MIGUEL A. F. SANJUÁN

This paper analyzes the role of nonlinear dissipation on the universal escape oscillator. Nonlinear damping terms proportional to the power of the velocity are assumed and an investigation on its effects on the dynamics of the oscillator, such as the threshold of period-doubling bifurcation, fractal basin boundaries and how the basins of attraction are destroyed, is carried out. The results suggest that increasing the power of the nonlinear damping, has similar effects as of decreasing the damping coefficient for a linearly damped case, showing the very importance of the level or amount of energy dissipation.


2000 ◽  
Vol 10 (09) ◽  
pp. 2257-2267 ◽  
Author(s):  
JOSÉ L. TRUEBA ◽  
JOAQUÍN RAMS ◽  
MIGUEL A. F. SANJUÁN

This paper reports on the effect of nonlinear damping on certain nonlinear oscillators, where analytical estimates provided by the Melnikov theory are obtained. We assume general nonlinear damping terms proportional to the power of velocity. General and useful expressions for the nonlinearly damped Duffing oscillator and for the nonlinearly damped simple pendulum are computed. They provide the critical parameters in terms of the damping coefficient and damping exponent, that is, the power of the velocity, for which complicated behavior is expected. We also consider generalized nonlinear damped systems, which may contain several nonlinear damping terms. Using the idea of Melnikov equivalence, we show that the effect of nonlinear dissipation can be equivalent to a linearly damped nonlinear oscillator with a modified damping coefficient.


2009 ◽  
Vol 39 (3) ◽  
pp. 1092-1099 ◽  
Author(s):  
M. Siewe Siewe ◽  
Hongjun Cao ◽  
Miguel A.F. Sanjuán

2016 ◽  
Vol 26 (05) ◽  
pp. 1650085 ◽  
Author(s):  
C. H. Miwadinou ◽  
A. V. Monwanou ◽  
L. A. Hinvi ◽  
A. A. Koukpemedji ◽  
C. Ainamon ◽  
...  

The chaotic behavior of the modified Rayleigh–Duffing oscillator with [Formula: see text] potential and external excitation is investigated both analytically and numerically. The so-called oscillator models, for example, ship rolling motions. The single well and triple well potential cases are considered. Melnikov method is applied and the conditions for the existence of homoclinic and heteroclinic chaos are obtained. The effects of nonlinear damping on roll motion of ships are analyzed in detail. As it is known, nonlinear roll damping is a very important parameter in estimating ship responses. It is noted that the pure and unpure quadratic damping parameters affect the Melnikov criterion in the heteroclinic and homoclinic cases respectively while the pure cubic parameter affects the amplitude in both cases. The predictions have been tested with numerical simulations based on the basin of attraction. It is pointed out that certain quadratic damping effects are contrary to cubic damping effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


2001 ◽  
Vol 7 (3) ◽  
pp. 253-282 ◽  
Author(s):  
Ch. Srinivasa Rao ◽  
P. L. Sachdev ◽  
Mythily Ramaswamy

The nonlinear ordinary differential equation resulting from the self-similar reduction of a generalized Burgers equation with nonlinear damping is studied in some detail. Assuming initial conditions at the origin we observe a wide variety of solutions – (positive) single hump, unbounded or those with a finite zero. The existence and nonexistence of positive bounded solutions with different types of decay (exponential or algebraic) to zero at infinity for specific parameter ranges are proved.


Optik ◽  
2018 ◽  
Vol 174 ◽  
pp. 114-120 ◽  
Author(s):  
Santiago Echeverri-Arteaga ◽  
Herbert Vinck-Posada ◽  
Edgar A. Gómez

Author(s):  
Albert C. J. Luo ◽  
Jianzhe Huang

In this paper, the analytical, approximate solutions of period-1 motions in the nonlinear damping, periodically forced, Duffing oscillator is obtained. The corresponding stability and bifurcation analysis of the HB2 approximate solution of period-1 motions in the forced Duffing oscillator is carried out. Numerical illustrations of period-1 motions are presented.


Author(s):  
Stefano Lenci ◽  
Giuseppe Rega

Abstract The problem of avoiding the homoclinic bifurcation of the hilltop saddle of the Helmholtz equation by a shrewd choice of the shape of the external excitation is considered. The distance between the perturbed manifolds is computed by means of the Melnikov’s method, and its dependence on the shape of the excitation is emphasized. Successively, it is shown how it is possible to determine a theoretical optimal excitation which maximizes the distance between stable and unstable manifolds for a fixed excitation amplitude or, equivalently, which maximizes the critical amplitude for homoclinic bifurcation. The practical case of a finite number of subharmonics is considered in detail. The corresponding optimal problems are solved numerically and the related optimal excitations are given. It is shown that when the number of subharmonics increases, the critical threshold for homoclinic bifurcation tends to double with respect to the reference case of harmonic excitation. Some numerical simulations are finally performed to verify the theoretical predictions and the effectiveness of the control procedure.


Sign in / Sign up

Export Citation Format

Share Document