scholarly journals Sliding Bifurcations in the Memristive Murali–Lakshmanan–Chua Circuit and the Memristive Driven Chua Oscillator

2020 ◽  
Vol 30 (14) ◽  
pp. 2050214
Author(s):  
A. Ishaq Ahamed ◽  
M. Lakshmanan

In this paper, we report the occurrence of sliding bifurcations admitted by the memristive Murali–Lakshmanan–Chua circuit [Ishaq & Lakshmanan, 2013] and the memristive driven Chua oscillator [Ishaq et al., 2011]. Both of these circuits have a flux-controlled active memristor designed by the authors in 2011, as their nonlinear element. The three-segment piecewise-linear characteristic of this memristor bestows on the circuits two discontinuity boundaries, dividing their phase spaces into three subregions. For proper choice of parameters, these circuits take on a degree of smoothness equal to one at each of their two discontinuities, thereby causing them to behave as Filippov systems. Sliding bifurcations, which are characteristic of Filippov systems, arise when the periodic orbits in each of the subregions, interact with the discontinuity boundaries, giving rise to many interesting dynamical phenomena. The numerical simulations are carried out after incorporating proper zero time discontinuity mapping (ZDM) corrections. These are found to agree well with the experimental observations which we report here appropriately.

2013 ◽  
Vol 23 (06) ◽  
pp. 1350098 ◽  
Author(s):  
A. ISHAQ AHAMED ◽  
M. LAKSHMANAN

In this paper, a memristive Murali–Lakshmanan–Chua (MLC) circuit is built by replacing the nonlinear element of an ordinary MLC circuit, namely the Chua's diode, with a three-segment piecewise-linear active flux controlled memristor. The bistability nature of the memristor introduces two discontinuity boundaries or switching manifolds in the circuit topology. As a result, the circuit becomes a piecewise-smooth system of second order. Grazing bifurcations, which are essentially a form of discontinuity-induced nonsmooth bifurcations, occur at these boundaries and govern the dynamics of the circuit. While the interaction of the memristor-aided self oscillations of the circuit and the external sinusoidal forcing result in the phenomenon of beats occurring in the circuit, grazing bifurcations endow them with chaotic and hyperchaotic nature. In addition, the circuit admits a codimension-5 bifurcation and transient hyperchaos. Grazing bifurcations as well as other behaviors have been analyzed numerically using time series plots, phase portraits, bifurcation diagram, power spectra and Lyapunov spectrum, as well as the recent 0–1 K test for chaos, obtained after constructing a proper Zero Time Discontinuity Map (ZDM) and Poincaré Discontinuity Map (PDM) analytically. Multisim simulations using a model of piecewise linear memristor have also been used to confirm some of the behaviors.


2017 ◽  
Vol 27 (06) ◽  
pp. 1730021 ◽  
Author(s):  
A. Ishaq Ahamed ◽  
M. Lakshmanan

We report using Clarke’s concept of generalized differential and a modification of Floquet theory to nonsmooth oscillations, the occurrence of discontinuity induced Hopf bifurcations and Neimark–Sacker bifurcations leading to quasiperiodic attractors in a memristive Murali–Lakshmanan–Chua (memristive MLC) circuit. The above bifurcations arise because of the fact that a memristive MLC circuit is basically a nonsmooth system by virtue of having a memristive element as its nonlinearity. The switching and modulating properties of the memristor which we have considered endow the circuit with two discontinuity boundaries and multiple equilibrium points as well. As the Jacobian matrices about these equilibrium points are noninvertible, they are nonhyperbolic, some of these admit local bifurcations as well. Consequently when these equilibrium points are perturbed, they lose their stability giving rise to quasiperiodic orbits. The numerical simulations carried out by incorporating proper discontinuity mappings (DMs), such as the Poincaré discontinuity map (PDM) and zero time discontinuity map (ZDM), are found to agree well with experimental observations.


2005 ◽  
Vol 15 (01) ◽  
pp. 1-49 ◽  
Author(s):  
AKIO TSUNEDA

In this tutorial paper, we present some interesting phenomena from Chua's equation with a cubic nonlinearity as well as that with a piecewise-linear characteristic, where a cubic polynomial approximates the original three-segment piecewise-linear function. A gallery of attractors and bifurcation diagrams obtained by numerical simulations are presented. We hope this will motivate researchers to study the smooth version of this extremely simple yet versatile equation with more than 20 attractors.


Author(s):  
S.J Hogan ◽  
L Higham ◽  
T.C.L Griffin

In this paper, we consider periodic solutions of discontinuous non-smooth maps. We show how the fixed points of a general piecewise linear map with a discontinuity (‘a map with a gap’) behave under parameter variation. We show in detail all the possible behaviours of period 1 and period 2 solutions. For positive gaps, we find that period 2 solutions can exist independently of period 1 solutions. Conversely, for negative gaps, period 1 and period 2 solutions can coexist. Higher periodic orbits can also exist and be stable and we give several examples of how these solutions behave under parameter variation. Finally, we compare our results with those of Jain & Banerjee (Jain & Banerjee 2003 Int. J. Bifurcat. Chaos 13 , 3341–3351) and Banerjee et al . (Banerjee et al . 2004 IEEE Trans. Circ. Syst. II 51 , 649–654) and explain their numerical simulations.


2008 ◽  
Vol 18 (10) ◽  
pp. 2965-2980 ◽  
Author(s):  
SYAMAL KUMAR DANA ◽  
BRAJENDRA K. SINGH ◽  
SATYABRATA CHAKRABORTY ◽  
RAM CHANDRA YADAV ◽  
JÜRGEN KURTHS ◽  
...  

A unidirectional coupling scheme is investigated in double scroll type chaotic oscillators that reveal interesting multiscroll dynamics. Instead of using self-oscillatory systems, in this scheme, double scroll chaos from one oscillator is forced into another similar oscillator in a resting state. This coupling scheme is explored in the Chua oscillator, a modified Chua oscillator and the Lorenz oscillator. We have modified the Chua oscillator by simply changing its piecewise linear function slightly, thereby deriving a new 3-scroll attractor. We have observed 4-scroll, 6-scroll attractors in the driven Chua oscillator and the modified Chua oscillator respectively in an intermittency regime of weaker coupling. We have extended the coupling scheme to the Lorenz system when even more interesting multiscroll dynamics (3-, 4-, 5-, 6-scroll) is observed with decreasing coupling strength. It appears as if a hidden multiscroll structure unfolds with weakening coupling interactions. One after another, additional scrolls appear in the driven Lorenz system when the coupling strength is gradually decreased in the weaker coupling regime. The origin of such multiscroll dynamics is explained using eigenvalue analysis and a bifurcation diagram. A schematic diagram of the multiscroll trajectories is presented to further elucidate the evolution of the scrolls. Experimental evidence is also presented using the Chua circuit and an electronic analog of the Lorenz system.


2009 ◽  
Vol 19 (04) ◽  
pp. 1351-1355 ◽  
Author(s):  
HOLOKX A. ALBUQUERQUE ◽  
PAULO C. RECH

In this paper we investigate, via numerical simulations, the parameter space of the set of autonomous differential equations of a Chua oscillator, where the piecewise-linear function usually taken to describe the nonlinearity of the Chua diode was replaced by a cubic polynomial. As far as we know, we are the first to report that this parameter-space presents islands of periodicity embedded in a sea of chaos, scenario typically observed only in discrete-time models until recently. We show that these islands are self-similar, and organize themselves in period-adding bifurcation cascades.


2011 ◽  
Vol 21 (03) ◽  
pp. 725-735 ◽  
Author(s):  
K. SRINIVASAN ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
M. LAKSHMANAN ◽  
SUDESHNA SINHA

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.


Author(s):  
B. Fiedler ◽  
V. Flunkert ◽  
P. Hövel ◽  
E. Schöll

We study diffusively coupled oscillators in Hopf normal form. By introducing a non-invasive delay coupling, we are able to stabilize the inherently unstable anti-phase orbits. For the super- and subcritical cases, we state a condition on the oscillator’s nonlinearity that is necessary and sufficient to find coupling parameters for successful stabilization. We prove these conditions and review previous results on the stabilization of odd-number orbits by time-delayed feedback. Finally, we illustrate the results with numerical simulations.


2017 ◽  
Vol 27 (12) ◽  
pp. 1730042 ◽  
Author(s):  
David J. W. Simpson

As the parameters of a piecewise-smooth system of ODEs are varied, a periodic orbit undergoes a bifurcation when it collides with a surface where the system is discontinuous. Under certain conditions this is a grazing-sliding bifurcation. Near grazing-sliding bifurcations, structurally stable dynamics are captured by piecewise-linear continuous maps. Recently it was shown that maps of this class can have infinitely many asymptotically stable periodic solutions of a simple type. Here this result is used to show that at a grazing-sliding bifurcation an asymptotically stable periodic orbit can bifurcate into infinitely many asymptotically stable periodic orbits. For an abstract ODE system the periodic orbits are continued numerically revealing subsequent bifurcations at which they are destroyed.


Sign in / Sign up

Export Citation Format

Share Document