A New System with a Self-Excited Fully-Quadratic Strange Attractor and Its Twin Strange Repeller

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Arthanari Ramesh ◽  
Iqtadar Hussain ◽  
Hayder Natiq ◽  
Mahtab Mehrabbeik ◽  
Sajad Jafari ◽  
...  

In nonlinear dynamics, the study of chaotic systems has attracted the attention of many researchers around the world due to the exciting and peculiar properties of such systems. In this regard, the present paper introduces a new system with a self-excited strange attractor and its twin strange repeller. The unique characteristic of the presented system is that the system variables are all in their quadratic forms; therefore, the proposed system is called a fully-quadratic system. This paper also elaborates on the study of the bifurcation diagram, the interpretation of Lyapunov exponents, the representation of basin of attraction, and the calculation of connecting curves as the employed method for investigating the system’s dynamics. The investigation of 2D bifurcation diagrams and Lyapunov exponents indicated in this paper can better recognize the system’s dynamics since they are plotted considering simultaneous changes of two parameters. Moreover, the connecting curves of the proposed system are calculated. The system’s connecting curves help identify the system’s different behaviors by providing general information about the nature of the flows.

2016 ◽  
Vol 26 (02) ◽  
pp. 1650031 ◽  
Author(s):  
Sajad Jafari ◽  
Viet-Thanh Pham ◽  
Tomasz Kapitaniak

Recently, many rare chaotic systems have been found including chaotic systems with no equilibria. However, it is surprising that such a system can exhibit multiscroll chaotic sea. In this paper, a novel no-equilibrium system with multiscroll hidden chaotic sea is introduced. Besides having multiscroll chaotic sea, this system has two more interesting properties. Firstly, it is conservative (which is a rare feature in three-dimensional chaotic flows) but not Hamiltonian. Secondly, it has a coexisting set of nested tori. There is a hidden torus which coexists with the chaotic sea. This new system is investigated through numerical simulations such as phase portraits, Lyapunov exponents, Poincaré map, and frequency spectra. Furthermore, the feasibility of such a system is verified through circuital implementation.


2009 ◽  
Vol 19 (11) ◽  
pp. 3841-3853 ◽  
Author(s):  
ZENGHUI WANG ◽  
GUOYUAN QI ◽  
YANXIA SUN ◽  
MICHAËL ANTONIE VAN WYK ◽  
BAREND JACOBUS VAN WYK

In this paper, several three-dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have similar features. A simpler and generalized 3-D continuous autonomous system is proposed based on these features which can be extended to existing 3-D four-wing chaotic systems by adding some linear and/or quadratic terms. The new system can generate a four-wing chaotic attractor with simple topological structures. Some basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincaré maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950187 ◽  
Author(s):  
Sajad Jafari ◽  
Karthikeyan Rajagopal ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Viet-Thanh Pham

Recently, chaotic systems with hidden attractors and multistability have been of great interest in the field of chaos and nonlinear dynamics. Two special categories of systems with multistability are systems with extreme multistability and systems with megastability. In this paper, the simplest (yet) megastable chaotic oscillator is designed and introduced. Dynamical properties of this new system are completely investigated through tools like bifurcation diagram, Lyapunov exponents, and basin of attraction. It is shown that between its countable infinite coexisting attractors, only one is self-excited and the rest are hidden.


2009 ◽  
Vol 19 (06) ◽  
pp. 1931-1949 ◽  
Author(s):  
QIGUI YANG ◽  
KANGMING ZHANG ◽  
GUANRONG CHEN

In this paper, a modified generalized Lorenz-type system is introduced, which is state-equivalent to a simple and special form, and is parameterized by two parameters useful for chaos turning and system classification. More importantly, based on the parameterized form, two classes of new chaotic attractors are found for the first time in the literature, which are similar but nonequivalent in topological structure. To further understand the complex dynamics of the new system, some basic properties such as Lyapunov exponents, Hopf bifurcations and compound structure of the attractors are analyzed and demonstrated with careful numerical simulations.


2018 ◽  
Vol 28 (12) ◽  
pp. 1850144 ◽  
Author(s):  
Shirin Panahi ◽  
Julien C. Sprott ◽  
Sajad Jafari

Two simple chaotic maps without equilibria are proposed in this paper. All nonlinearities are quadratic and the functions of the right-hand side of the equations are continuous. The procedure of their design is explained and their dynamical properties such as return map, bifurcation diagram, Lyapunov exponents, and basin of attraction are investigated. These maps belong to the hidden attractor category which is a newly introduced category of dynamical system.


1996 ◽  
Vol 06 (04) ◽  
pp. 759-767
Author(s):  
R. SINGH ◽  
P.S. MOHARIR ◽  
V.M. MARU

The notion of compounding a chaotic system was introduced earlier. It consisted of varying the parameters of the compoundee system in proportion to the variables of the compounder system, resulting in a compound system which has in general higher Lyapunov exponents. Here, the notion is extended to self-compounding of a system with a real-earth example, and mutual compounding of dynamic systems. In the former, the variables in a system perturb its parameters. In the latter, two systems affect the parameters of each other in proportion to their variables. Examples of systems in such compounding relationships are studied. The existence of self-compounding is indicated in the geodynamics of mantle convection. The effect of mutual compounding is studied in terms of Lyapunov exponent variations.


2017 ◽  
Vol 11 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Fernando Serrano ◽  
Josep M. Rossell

AbstractIn this paper a hybrid passivity based and fuzzy type-2 controller for chaotic and hyper-chaotic systems is presented. The proposed control strategy is an appropriate choice to be implemented for the stabilization of chaotic and hyper-chaotic systems due to the energy considerations of the passivity based controller and the flexibility and capability of the fuzzy type-2 controller to deal with uncertainties. As it is known, chaotic systems are those kinds of systems in which one of their Lyapunov exponents is real positive, and hyper-chaotic systems are those kinds of systems in which more than one Lyapunov exponents are real positive. In this article one chaotic Lorentz attractor and one four dimensions hyper-chaotic system are considered to be stabilized with the proposed control strategy. It is proved that both systems are stabilized by the passivity based and fuzzy type-2 controller, in which a control law is designed according to the energy considerations selecting an appropriate storage function to meet the passivity conditions. The fuzzy type-2 controller part is designed in order to behave as a state feedback controller, exploiting the flexibility and the capability to deal with uncertainties. This work begins with the stability analysis of the chaotic Lorentz attractor and a four dimensions hyper-chaotic system. The rest of the paper deals with the design of the proposed control strategy for both systems in order to design an appropriate controller that meets the design requirements. Finally, numerical simulations are done to corroborate the obtained theoretical results.


Author(s):  
Patrizia Castiglione ◽  
Massimo Falcioni ◽  
Annick Lesne ◽  
Angelo Vulpiani

Sign in / Sign up

Export Citation Format

Share Document