Dynamics of Delayed Phytoplankton–Zooplankton System with Disease Spread Among Zooplankton

2021 ◽  
Vol 31 (12) ◽  
pp. 2150184
Author(s):  
Renxiang Shi

In this paper, we study the dynamics of phytoplankton–zooplankton system with delay, where delay means that releasing toxin for phytoplankton is not instantaneous. First, we prove the positivity and boundedness of solutions, discuss the Hopf bifurcation caused by delay. Furthermore, we study the property of Hopf bifurcation by center manifold and normal form. Then, we study the global existence of bifurcated periodic solution. Finally by simulation, we show the influence of delay, disease spread and recovery from infected to susceptible on the dynamics of phytoplankton–zooplankton system.

2014 ◽  
Vol 926-930 ◽  
pp. 3314-3317
Author(s):  
Hong Bing Chen

In this paper, a predator–prey model with discrete and distributed delays is investigated. the direction of Hopf bifurcation as well as stability of periodic solution are studied. The method which we used is the normal form theory and center manifold. At last, an example showed the feasibility of results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150114
Author(s):  
Ming Liu ◽  
Jun Cao ◽  
Xiaofeng Xu

In this paper, the dynamics of a phytoplankton–zooplankton system with delay and diffusion are investigated. The positivity and persistence are studied by using the comparison theorem and upper and lower solutions method. The stability of steady states and the existence of local Hopf bifurcation are obtained by analyzing the distribution of eigenvalues. And the global existence of positive periodic solutions is established by using the global Hopf bifurcation result given by Wu [1996]. Finally, some numerical simulations are carried out to illustrate the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950047 ◽  
Author(s):  
Xin-You Meng ◽  
Jiao-Guo Wang

In this paper, a delayed diffusive phytoplankton-zooplankton model with Beddington–DeAngelis functional response and toxins is investigated. Existence of equilibria of the system are solved. The global asymptotic stability of the zooplankton-free equilibrium is obtained. The local stability of the coexistent equilibrium and existence of Hopf bifurcation are discussed. In addition, the properties of the Hopf bifurcation are studied based on the center manifold and normal form theory for partial differential equations. Finally, some numerical simulations are also carried out to confirm our theoretical analysis.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xin-You Meng ◽  
Li Xiao

In this paper, a diffusion two-phytoplankton one-zooplankton model with time delay, Beddington–DeAnglis functional response, and Holling II functional response is proposed. First, the existence and local stability of all equilibria of such model are studied. Then, the existence of Hopf bifurcation of the corresponding model without diffusion is given by taking time delay as the bifurcation parameter. Next, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are investigated by using the normal form theory and center manifold theorem. Furthermore, due to the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the model is investigated by considering time delay as the bifurcation parameter. The explicit formulas to determine the properties of Hopf bifurcation are given by the method of the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are performed to check out our theoretical results.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanhui Zhai ◽  
Haiyun Bai ◽  
Ying Xiong ◽  
Xiaona Ma

This paper mainly modifies and further develops the Reyleigh price model. By modifying the basic Reyleigh model, we can more accurately illustrate the economic phenomena with price varying. First, we research the dynamics of the modified Reyleigh model with time delay. By employing the normal form theory and center manifold theory, we obtain some testable results on these issues. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document