COMMUTATOR SUBGROUPS OF FREE NILPOTENT GROUPS

2007 ◽  
Vol 17 (05n06) ◽  
pp. 1021-1031
Author(s):  
N. GUPTA ◽  
I. B. S. PASSI

For fixed m, n ≥ 2, we examine the structure of the nth lower central subgroup γn(F) of the free group F of rank m with respect to a certain finite chain F = F(0) > F(1) > ⋯ > F(l-1) > F(l) = {1} of free groups in which F(k) is of finite rank m(k) and is contained in the kth derived subgroup δk(F) of F. The derived subgroups δk(F/γn(F)) of the free nilpotent group F/γn(F) are isomorphic to the quotients F(k)/(F(k) ∩ γn(F)) and admit presentations of the form 〈xk,1,…,xk,m(k): γ(n)(F(k))〉, where γ(n)(F(k)), contained in γn(F), is a certain partial lower central subgroup of F(k). We give a complete description of γn(F) as a staggered product Π1 ≤ k ≤ l-1(γ〈n〉(F(k))*γ[n](F(k)))F(k+1), where γ〈n〉(F(k)) is a free factor of the derived subgroup [F(k),F(k)] of F(k) having countable infinite rank and generated by a certain set of reduced commutators of weight at least n, and γ[n](F(k)) is the subgroup generated by a certain finite set of products of non-reduced ordered commutators of weight at least n. There are some far-reaching consequences.

1989 ◽  
Vol 40 (2) ◽  
pp. 175-187 ◽  
Author(s):  
R.G. Burns ◽  
Lian Pi

It is shown that the natural generalisations of the elementary Nielsen transformations of a free group to the infinite-rank case, furnish generators for the subgroup of “bounded” automorphisms of any relatively free nilpotent group of infinite rank. This settles the nilpotent analogue of a question of D. Solitar concerning the “bounded” automorphisms of absolutely free groups of infinite rank.


2007 ◽  
Vol 83 (2) ◽  
pp. 149-156
Author(s):  
Gilbert Baumslag

AbstractAn element in a free group is a proper power if and only if it is a proper power in every nilpotent factor group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent group is a proper power.


2001 ◽  
Vol 63 (3) ◽  
pp. 607-622 ◽  
Author(s):  
ATHANASSIOS I. PAPISTAS

For positive integers n and c, with n [ges ] 2, let Gn, c be a relatively free group of finite rank n in the variety N2A ∧ AN2 ∧ Nc. It is shown that the subgroup of the automorphism group Aut(Gn, c) of Gn, c generated by the tame automorphisms and an explicitly described finite set of IA-automorphisms of Gn, c has finite index in Aut(Gn, c). Furthermore, it is proved that there are no non-trivial elements of Gn, c fixed by every tame automorphism of Gn, c.


1974 ◽  
Vol 17 (2) ◽  
pp. 222-233 ◽  
Author(s):  
Narain Gupta ◽  
Frank Levin

Any variety of groups is generated by its free group of countably infinite rank. A problem that appears in various forms in Hanna Neumann's book [7] (see, for intance, sections 2.4, 2.5, 3.5, 3.6) is that of determining if a given variety B can be generated by Fk(B), one of its free groups of finite rank; and if so, if Fn(B) is residually a k-generator group for all n ≧ k. (Here, as in the sequel, all unexplained notation follows [7].)


2009 ◽  
Vol 2009 ◽  
pp. 1-10
Author(s):  
Mehri Akhavan-Malayeri

In a free group no nontrivial commutator is a square. And in the free groupF2=F(x1,x2)freely generated byx1,x2the commutator[x1,x2]is never the product of two squares inF2, although it is always the product of three squares. LetF2,3=〈x1,x2〉be a free nilpotent group of rank 2 and class 3 freely generated byx1,x2. We prove that inF2,3=〈x1,x2〉, it is possible to write certain commutators as a square. We denote bySq(γ)the minimal number of squares which is required to writeγas a product of squares in groupG. And we defineSq(G)=sup{Sq(γ);γ∈G′}. We discuss the question of when the square length of a given commutator ofF2,3is equal to 1 or 2 or 3. The precise formulas for expressing any commutator ofF2,3as the minimal number of squares are given. Finally as an application of these results we prove thatSq(F′2,3)=3.


1976 ◽  
Vol 79 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Joan L. Dyer ◽  
Edward Formanek

In this paper we prove that the automorphism group A(N) of a free nilpotent group N of class 2 and finite rank n is complete, except when n is 1 or 3. Equivalently, the centre of A(N) is trivial and every automorphism of A(N) is inner, provided n ≠ 1 or 3. When n = 3, A(N) has an our automorphism of order 2, so A(A(N)) is a split extension of A(N) by . In this case, A(A(N)) is complete. These results provide some evidence supporting a conjecture of Gilbert Baumslag that the sequencebecomes periodic if N is a finitely generated nilpotent group.


1992 ◽  
Vol 46 (3) ◽  
pp. 497-507
Author(s):  
Roger M. Bryant

A simple new proof is given of a result of Vaughan-Lee which implies that if G is a relatively free nilpotent group of finite rank k and nilpotency class c with c < k then the characteristic subgroups of G are all fully invariant. It is proved that the condition c < k can be weakened to c < k + p − 2 when G has p–power exponent for some prime p. On the other hand it is shown that for each prime p there is a 2-generator relatively free p-group G which is nilpotent of class 2p such that the centre of G is not fully invariant.


2010 ◽  
Vol 20 (05) ◽  
pp. 661-669 ◽  
Author(s):  
TARA C. DAVIS

We prove that a subgroup of a finitely generated free nilpotent group F is undistorted if and only if it is a retract of a subgroup of finite index in F.


2004 ◽  
Vol 11 (1) ◽  
pp. 27-33
Author(s):  
M. Amaglobeli

Abstract The canonical form of elements of a 𝐺-free nilpotent group of step 3 is defined assuming that the group 𝐺 contains no elements of order 2.


2011 ◽  
Vol 76 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Rizos Sklinos

AbstractWe answer a question raised in [9], that is whether the infinite weight of the generic type of the free group is witnessed in Fω. We also prove that the set of primitive elements in finite rank free groups is not uniformly definable. As a corollary, we observe that the generic type over the empty set is not isolated. Finally, we show that uncountable free groups are not ℵ1-homogeneous.


Sign in / Sign up

Export Citation Format

Share Document