EVALUATING INTONATIONAL FEATURES FOR EMOTION RECOGNITION FROM SPEECH

2007 ◽  
Vol 16 (06) ◽  
pp. 1001-1014 ◽  
Author(s):  
PANAGIOTIS ZERVAS ◽  
IOSIF MPORAS ◽  
NIKOS FAKOTAKIS ◽  
GEORGE KOKKINAKIS

This paper presents and discusses the problem of emotion recognition from speech signals with the utilization of features bearing intonational information. In particular parameters extracted from Fujisaki's model of intonation are presented and evaluated. Machine learning models were build with the utilization of C4.5 decision tree inducer, instance based learner and Bayesian learning. The datasets utilized for the purpose of training machine learning models were extracted from two emotional databases of acted speech. Experimental results showed the effectiveness of Fujisaki's model attributes since they enhanced the recognition process for most of the emotion categories and learning approaches helping to the segregation of emotion categories.

Author(s):  
Jingying Wang ◽  
Baobin Li ◽  
Changye Zhu ◽  
Shun Li ◽  
Tingshao Zhu

Automatic emotion recognition was of great value in many applications; however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Except face expression and voices, human gaits could reflect the walker's emotional state too. By utilizing 59 participants' gaits data with emotion labels, the authors train machine learning models that are able to “sense” individual emotion. Experimental results show these models work very well and prove that gait features are effective in characterizing and recognizing emotions.


Author(s):  
Jingying Wang ◽  
Baobin Li ◽  
Changye Zhu ◽  
Shun Li ◽  
Tingshao Zhu

Automatic emotion recognition was of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Except face expression and voices, human gaits could reflect the walker's emotional state too. By utilizing 59 participants' gaits data with emotion labels, we train machine learning models that are able to “sense” individual emotion. Experimental results show these models work very well, proved that gait features are effective in characterizing and recognizing emotions.


2021 ◽  
Vol 23 (4) ◽  
pp. 2742-2752
Author(s):  
Tamar L. Greaves ◽  
Karin S. Schaffarczyk McHale ◽  
Raphael F. Burkart-Radke ◽  
Jason B. Harper ◽  
Tu C. Le

Machine learning models were developed for an organic reaction in ionic liquids and validated on a selection of ionic liquids.


2021 ◽  
Author(s):  
Sebastião Santos ◽  
Beatriz Silveira ◽  
Vinicius Durelli ◽  
Rafael Durelli ◽  
Simone Souza ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


2021 ◽  
Vol 11 (18) ◽  
pp. 8438
Author(s):  
Muhammad Mujahid ◽  
Ernesto Lee ◽  
Furqan Rustam ◽  
Patrick Bernard Washington ◽  
Saleem Ullah ◽  
...  

Amid the worldwide COVID-19 pandemic lockdowns, the closure of educational institutes leads to an unprecedented rise in online learning. For limiting the impact of COVID-19 and obstructing its widespread, educational institutions closed their campuses immediately and academic activities are moved to e-learning platforms. The effectiveness of e-learning is a critical concern for both students and parents, specifically in terms of its suitability to students and teachers and its technical feasibility with respect to different social scenarios. Such concerns must be reviewed from several aspects before e-learning can be adopted at such a larger scale. This study endeavors to investigate the effectiveness of e-learning by analyzing the sentiments of people about e-learning. Due to the rise of social media as an important mode of communication recently, people’s views can be found on platforms such as Twitter, Instagram, Facebook, etc. This study uses a Twitter dataset containing 17,155 tweets about e-learning. Machine learning and deep learning approaches have shown their suitability, capability, and potential for image processing, object detection, and natural language processing tasks and text analysis is no exception. Machine learning approaches have been largely used both for annotation and text and sentiment analysis. Keeping in view the adequacy and efficacy of machine learning models, this study adopts TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet to analyze the polarity and subjectivity score of tweets’ text. Furthermore, bearing in mind the fact that machine learning models display high classification accuracy, various machine learning models have been used for sentiment classification. Two feature extraction techniques, TF-IDF (Term Frequency-Inverse Document Frequency) and BoW (Bag of Words) have been used to effectively build and evaluate the models. All the models have been evaluated in terms of various important performance metrics such as accuracy, precision, recall, and F1 score. The results reveal that the random forest and support vector machine classifier achieve the highest accuracy of 0.95 when used with Bow features. Performance comparison is carried out for results of TextBlob, VADER, and SentiWordNet, as well as classification results of machine learning models and deep learning models such as CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional-LSTM). Additionally, topic modeling is performed to find the problems associated with e-learning which indicates that uncertainty of campus opening date, children’s disabilities to grasp online education, and lagging efficient networks for online education are the top three problems.


2021 ◽  
Vol 23 (08) ◽  
pp. 148-160
Author(s):  
Dr. V.Vasudha Rani ◽  
◽  
Dr. G. Vasavi ◽  
Dr. K.R.N Kiran Kumar ◽  
◽  
...  

Diabetes is one of the chronicdiseases in the world. Millions of people are suffering with several other health issues caused by diabetes, every year. Diabetes has got three stages such as type2, type1 and insulin. Curing of diabetes disease at later stages is practically difficult. Here in this paper, we proposed a DNN model and its performance comparison with some of the machine learning models to predict the disease at an earlystage based on the current health condition of the patient. An artificial neural network (ANN) is a predictive model designed to work the same way a human brain does and works better with larger datasets. Having the concept of hidden layers, neural networks work better at predictive analytics and can make predictions with more accuracy. Novelty of this work lies in integration of feature selection method used to optimize the Multilayer Perceptron (MLP) to reduce the number of required input attributes. The results achieved using this method and several conventional machines learning approaches such as Logistic Regression, Random Forest Classifier (RFC) are compared. The proposed DNN method is proved to show better accuracy than Machine learning models for early stage detection of diabetes. This paper work is applicable to clinical support as a tool for making predecisions by the doctors and physicians.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Basim Mahbooba ◽  
Mohan Timilsina ◽  
Radhya Sahal ◽  
Martin Serrano

Despite the growing popularity of machine learning models in the cyber-security applications (e.g., an intrusion detection system (IDS)), most of these models are perceived as a black-box. The eXplainable Artificial Intelligence (XAI) has become increasingly important to interpret the machine learning models to enhance trust management by allowing human experts to understand the underlying data evidence and causal reasoning. According to IDS, the critical role of trust management is to understand the impact of the malicious data to detect any intrusion in the system. The previous studies focused more on the accuracy of the various classification algorithms for trust in IDS. They do not often provide insights into their behavior and reasoning provided by the sophisticated algorithm. Therefore, in this paper, we have addressed XAI concept to enhance trust management by exploring the decision tree model in the area of IDS. We use simple decision tree algorithms that can be easily read and even resemble a human approach to decision-making by splitting the choice into many small subchoices for IDS. We experimented with this approach by extracting rules in a widely used KDD benchmark dataset. We also compared the accuracy of the decision tree approach with the other state-of-the-art algorithms.


Author(s):  
Ziyue Jiang ◽  
Yi Ren ◽  
Ming Lei ◽  
Zhou Zhao

Federated learning enables collaborative training of machine learning models under strict privacy restrictions and federated text-to-speech aims to synthesize natural speech of multiple users with a few audio training samples stored in their devices locally. However, federated text-to-speech faces several challenges: very few training samples from each speaker are available, training samples are all stored in local device of each user, and global model is vulnerable to various attacks. In this paper, we propose a novel federated learning architecture based on continual learning approaches to overcome the difficulties above. Specifically, 1) we use gradual pruning masks to isolate parameters for preserving speakers' tones; 2) we apply selective masks for effectively reusing knowledge from tasks; 3) a private speaker embedding is introduced to keep users' privacy. Experiments on a reduced VCTK dataset demonstrate the effectiveness of FedSpeech: it nearly matches multi-task training in terms of multi-speaker speech quality; moreover, it sufficiently retains the speakers' tones and even outperforms the multi-task training in the speaker similarity experiment.


Sign in / Sign up

Export Citation Format

Share Document