scholarly journals ON KALUZA–KLEIN SPACE–TIME IN EINSTEIN–GAUSS–BONNET GRAVITY

2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.

1994 ◽  
Vol 09 (09) ◽  
pp. 771-774 ◽  
Author(s):  
JOSÉ P. S. LEMOS ◽  
PAULO M. SÁ

We show that the constant curvature two-dimensional theory of Teitelboim and Jackiw admits a black hole solution, which is free of space-time singularities. The maximally extended space-time consists of an infinite chain of universes connected by timelike wormholes.


1984 ◽  
Vol 62 (7) ◽  
pp. 632-638
Author(s):  
J. G. Williams

The exact solution of the Feynman checkerboard model is given both in terms of the hypergeometric series and in terms of Jacobi polynomials. It is shown how this leads, in the continuous limit, to the Dirac equation in two-dimensional space-time.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 144
Author(s):  
Jan-Willem van Holten

This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to two-dimensional (2-D) gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles that arise in string theory in the limit of infinite strings, and it is relevant for the equivalence of Minkowski and Rindler frame theories.


2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


Sign in / Sign up

Export Citation Format

Share Document