hypergeometric series
Recently Published Documents


TOTAL DOCUMENTS

751
(FIVE YEARS 114)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Jeremy Lovejoy

As analytic statements, classical $q$-series identities are equalities between power series for $|q|<1$. This paper concerns a different kind of identity, which we call a quantum $q$-series identity. By a quantum $q$-series identity we mean an identity which does not hold as an equality between power series inside the unit disk in the classical sense, but does hold on a dense subset of the boundary -- namely, at roots of unity. Prototypical examples were given over thirty years ago by Cohen and more recently by Bryson-Ono-Pitman-Rhoades and Folsom-Ki-Vu-Yang. We show how these and numerous other quantum $q$-series identities can all be easily deduced from one simple classical $q$-series transformation. We then use other results from the theory of $q$-hypergeometric series to find many more such identities. Some of these involve Ramanujan's false theta functions and/or mock theta functions.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Martin Hallnäs ◽  
Edwin Langmann ◽  
Masatoshi Noumi ◽  
Hjalmar Rosengren

AbstractKajihara obtained in 2004 a remarkable transformation formula connecting multiple basic hypergeometric series associated with A-type root systems of different ranks. By specialisations of his formula, we deduce kernel identities for deformed Macdonald–Ruijsenaars (MR) and Noumi–Sano (NS) operators. The deformed MR operators were introduced by Sergeev and Veselov in the first order case and by Feigin and Silantyev in the higher order cases. As applications of our kernel identities, we prove that all of these operators pairwise commute and are simultaneously diagonalised by the super-Macdonald polynomials. We also provide an explicit description of the algebra generated by the deformed MR and/or NS operators by a Harish-Chandra type isomorphism and show that the deformed MR (NS) operators can be viewed as restrictions of inverse limits of ordinary MR (NS) operators.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2546
Author(s):  
Tom Cuchta ◽  
Rebecca Luketic

A discrete analog of the Legendre polynomials defined by discrete hypergeometric series is investigated. The resulting polynomials have qualitatively similar properties to classical Legendre polynomials. We derive their difference equations, recurrence relations, and generating function.


2021 ◽  
Vol 5 (4) ◽  
pp. 150
Author(s):  
Junesang Choi ◽  
Mohd Idris Qureshi ◽  
Aarif Hussain Bhat ◽  
Javid Majid

In this paper, by introducing two sequences of new numbers and their derivatives, which are closely related to the Stirling numbers of the first kind, and choosing to employ six known generalized Kummer’s summation formulas for 2F1(−1) and 2F1(1/2), we establish six classes of generalized summation formulas for p+2Fp+1 with arguments −1 and 1/2 for any positive integer p. Next, by differentiating both sides of six chosen formulas presented here with respect to a specific parameter, among numerous ones, we demonstrate six identities in connection with finite sums of 4F3(−1) and 4F3(1/2). Further, we choose to give simple particular identities of some formulas presented here. We conclude this paper by highlighting a potential use of the newly presented numbers and posing some problems.


Author(s):  
VICTOR J. W. GUO ◽  
MICHAEL J. SCHLOSSER

Abstract We establish a family of q-supercongruences modulo the cube of a cyclotomic polynomial for truncated basic hypergeometric series. This confirms a weaker form of a conjecture of the present authors. Our proof employs a very-well-poised Karlsson–Minton type summation due to Gasper, together with the ‘creative microscoping’ method introduced by the first author in recent joint work with Zudilin.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jong-Do Park

In this paper, we compute the reproducing kernel B m , α z , w for the generalized Fock space F m , α 2 ℂ . The usual Fock space is the case when m = 2 . We express the reproducing kernel in terms of a suitable hypergeometric series   1 F q . In particular, we show that there is a close connection between B 4 , α z , w and the error function. We also obtain the closed forms of B m , α z , w when m = 1 , 2 / 3 , 1 / 2 . Finally, we also prove that B m , α z , z ~ e α z m z m − 2 as ∣ z ∣ ⟶ ∞ .


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1538
Author(s):  
Junesang Choi

We present generalizations of three classical summation formulas 2F1 due to Kummer, which are able to be derived from six known summation formulas of those types. As certain simple particular cases of the summation formulas provided here, we give a number of interesting formulas for double-finite series involving quotients of Gamma functions. We also consider several other applications of these formulas. Certain symmetries occur often in mathematical formulae and identities, both explicitly and implicitly. As an example, as mentioned in Remark 1, evident symmetries are naturally implicated in the treatment of generalized hypergeometric series.


Sign in / Sign up

Export Citation Format

Share Document