scholarly journals Dynamics of nonlinear interacting dark energy models

2019 ◽  
Vol 28 (12) ◽  
pp. 1950161 ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Supriya Pan ◽  
Weiqiang Yang

We investigate the cosmological dynamics of interacting dark energy models in which the interaction function is nonlinear in terms of the energy densities. Considering explicitly the interaction between a pressureless dark matter and a scalar field, minimally coupled to Einstein gravity, we explore the dynamics of the spatially flat FLRW universe for the exponential potential of the scalar field. We perform the stability analysis for three nonlinear interaction models of our consideration through the analysis of critical points and we investigate the cosmological parameters and discuss the physical behavior at the critical points. From the analysis of the critical points we find a number of possibilities that include the stable late-time accelerated solution, [Formula: see text]CDM-like solution, radiation-like solution and moreover the unstable inflationary solution.

2013 ◽  
Vol 22 (08) ◽  
pp. 1350039 ◽  
Author(s):  
PENG HUANG ◽  
YONG-CHANG HUANG

Three aspects of the triple interacting dark energy model are studied. The relation between two types of the triple interacting dark energy models is investigated first. Then, the concrete forms of the interacting terms are given by supposing ratios between different energy components is stationary. Furthermore, the stability of the triple interacting dark energy model with different transfer terms is studied in detail, and the complete table of relations between the stability and the transfer terms is given, we find that only models with transformation between matter and dark energy proportional to ρc or ρDE, while the transformation between radiation and matter is not proportional to ρR, are stable against perturbation, which give strong restriction on the model building of the triple interacting.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Emre Dil

We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.


2008 ◽  
Vol 77 (10) ◽  
Author(s):  
Germán Olivares ◽  
Fernando Atrio-Barandela ◽  
Diego Pavón

2020 ◽  
Vol 35 (28) ◽  
pp. 2050175
Author(s):  
Sayani Maity ◽  
Mahasweta Biswas ◽  
Ujjal Debnath

This work deals with two fluid system in the framework of generalized Rastall gravity theory. One component represents dark energy whereas the other is dark matter. For the dark energy component, entropy corrected holographic and entropy corrected new agegraphic dark energy models in power-law and logarithmic versions are taken into account. For this study, we assume two classes of scale factors in which one corresponds to the future singularity and another corresponds to the initial singularity. For each of the entropy corrected dark energy models, the cosmological parameters such as Hubble parameter, deceleration parameter and equation of state parameter are calculated and their implications are established. Furthermore, to describe the stability analysis of the models, the behaviors of the squared speed of sound are analyzed graphically for each of these models. From the graphical analysis of [Formula: see text] plane, the thawing or freezing regions of all the models are determined.


Sign in / Sign up

Export Citation Format

Share Document