scholarly journals REALITY CONDITIONS FOR LORENTZIAN AND EUCLIDEAN GRAVITY IN THE ASHTEKAR FORMULATION

1994 ◽  
Vol 03 (03) ◽  
pp. 513-528 ◽  
Author(s):  
GUILLERMO A. MENA MARUGÁN

Using Ashtekar variables, we analyze Lorentzian and Euclidean gravity in vacuum up to a constant conformal transformation. Keeping unaltered the symplectic structure in the full theory of complex gravity, we prove that the reality conditions are invariant under a Wick rotation of the time, and show that the compatibility of the algebra of commutators and constraints with the involution defined by the reality conditions restricts the possible values of the conformal factor to be either real or purely imaginary. In the first case, one recovers real Lorentzian general relativity. For purely imaginary conformal factors, the classical theory can be interpreted as real Euclidean gravity. The reality conditions associated with this Euclidean theory demand the hermiticity of the Ashtekar connection, but the densitized triad is represented by an anti-Hermitian operator. We also demonstrate that the Euclidean and Lorentzian sets of reality conditions lead to inequivalent quantizations of full general relativity. This conclusion also holds in the geometrodynamic formulation. As a consequence, it seems impossible to obtain Lorentzian physical predictions from the quantum theory constructed with the Euclidean reality conditions.

1982 ◽  
Vol 14 (11) ◽  
pp. 1085-1093
Author(s):  
Jerzy Rayski

Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


2020 ◽  
pp. 41-70
Author(s):  
Dean Rickles

In this chapter we examine the very earliest work on the problem of quantum gravity (understood very liberally). We show that, even before the concept of the quantization of the gravitational field in 1929, there was a fairly lively investigation of the relationships between gravity and quantum stretching as far back as 1916, and certainly no suggestion that such a theory would not be forthcoming. Indeed, there are, rather, many suggestions explicitly advocating that an integration of quantum theory and general relativity (or gravitation, at least) is essential for future physics, in order to construct a satisfactory foundation. We also see how this belief was guided by a diverse family of underlying agendas and constraints, often of a highly philosophical nature.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Denis Arruga ◽  
Jibril Ben Achour ◽  
Karim Noui

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint, leading under some conditions to a notion of deformed covariance. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance cannot be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study static solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition. In particular, we give the expressions of the components of the effective metric (for spherically symmetric black holes interior) in terms of the functions that govern the deformations of the theory.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1224 ◽  
Author(s):  
Adrian Kent

Models in which causation arises from higher level structures as well as from microdynamics may be relevant to unifying quantum theory with classical physics or general relativity. They also give a way of defining a form of panprotopsychist property dualism, in which consciousness and material physics causally affect one another. I describe probabilistic toy models based on cellular automata that illustrate possibilities and difficulties with these ideas.


Sign in / Sign up

Export Citation Format

Share Document