RELATIVISTIC OPTICAL MODEL FOR PROTON-NUCLEUS ELASTIC SCATTERING

2002 ◽  
Vol 11 (05) ◽  
pp. 425-436 ◽  
Author(s):  
M. Y. H. FARAG ◽  
M. Y. M. HASSAN

The relativistic description of the proton-nucleus elastic scattering can be considered within the framework of a relativistic optical potential model. The elastic scattering of proton with the nuclei 12 C , 16 O , 20 Ne , and 24 Mg at 800 MeV and 1.04 GeV are studied for relativistic and nonrelativistic treatments. The real optical potentials and the differential cross sections of these reactions are calculated. The obtained results are compared with the corresponding results obtained from the calculation depending on the Woods–Saxon optical potential which were adjusted to fit the experimental data. The present results are in good agreement with the experimental data.

2014 ◽  
Vol 92 (3) ◽  
pp. 206-215 ◽  
Author(s):  
Mahmudul Hasan ◽  
M. Alfaz Uddin ◽  
M. Ismail Hossain ◽  
A.K.F. Haque ◽  
A.K. Basak

The differential, total, and momentum transfer cross sections along with the minima in the differential cross sections (DCSs) and the Sherman function S(θ) for the elastic scattering of electrons by calcium atoms have been calculated. These calculations are done within the framework of complex electron–atom optical potential and relativistic dynamics, in the energy range 1–2000 eV. The results obtained are in good agreement with the available experimental data and are better than the previous calculations in overall assessment. In the DCSs, the energies and angular positions of five critical minima have been confirmed. In the vicinity of these critical minima, nine maximum polarization points have been found within the range −0.90 ≤ S(θ) ≤ +0.73. Near the critical minima, a strong energy dependence of maximum polarization points is found.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950074
Author(s):  
Zakaria M. M. Mahmoud ◽  
Awad A. Ibraheem ◽  
M. A. Hassanain

In this work, we simultaneously reanalyzed the differential elastic scattering cross-sections ([Formula: see text]) and the vector analyzing power ([Formula: see text]) of [Formula: see text]He elastic scattering. This analysis was performed using the folded optical model for both real central and spin-orbit (SO) potentials, respectively. For the imaginary central, we used the usual Woods-Saxon (WS) form. Three different model density distributions are used to calculate the potential. We aimed to examine the applicability of the microscopically derived SO potential and the structure effect of 6He nucleus. The presence of the [Formula: see text] experimental data of [Formula: see text]He makes it interesting for this study. Our calculations showed that the three densities gave similar predictions for the cross-sections data. The three microscopic SO potentials calculations of [Formula: see text] are not in a good agreement with the experimental data. We concluded that the SO formalism in its current form needs more investigations for exotic halo nuclei.


1996 ◽  
Vol 05 (03) ◽  
pp. 533-541 ◽  
Author(s):  
M. RASHDAN

Within a realistic model for the optical potential between nuclei based on the solution of the Bethe-Goldstone equation with the Reid soft-core potential, the differential cross-sections of the 28 Si –27 Al system, recently measured at energies around the Coulomb barrier, are calculated. The experimental data are well-reproduced over the entire energy range without any adjustable parameters to fit the cross-section.


2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2018 ◽  
Vol 64 (5) ◽  
pp. 498
Author(s):  
Hocine Aouchiche

Differential and integral cross sections for elastic scattering of electron by NH3 molecule are investigated for the energy ranging from 10 eV to 20 keV.  The calculations are carried out in the framework of partial wave formalism describing the target molecule by means of one center molecular Hartree-Fock functions.  A spherical complex optical potential used includes a static part – obtained here numerically from quantum calculation – and fine effects like correlation, polarization and exchange potentials. The results obtained in this model point out clearly the role played by the exchange and the correlation-polarization contributions in particular at lower scattering angles and lower incident energies. Both differential and integral cross sections obtained are compared with a large set of experimental data available in the literature and well agreement is found throughout the scattering angles and whole energy range investigated here.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050075
Author(s):  
Awad A. Ibraheem ◽  
M. El-Azab Farid ◽  
Eman Abd El-Rahman ◽  
Zakaria M. M. Mahmoud ◽  
Sherif R. Mokhtar

In this work, the elastic scattering of 6Li+[Formula: see text]Si system at wide range energies from 76 to 318[Formula: see text]MeV is analyzed. The analysis is carried out in the framework of the optical model (OM). Two different methods are adopted for nuclear optical potential of this system. The first method is the double folding cluster (DFC) for the real part supplied with an imaginary part in the Woods–Saxon (WS) form. In the second one, the double folding (DF) model based upon São Paulo potential (SPP) is used as real and imaginary parts each multiplied by a corresponding normalization factor. For [Formula: see text]Si, the full [Formula: see text]-cluster density is considered while the [Formula: see text]-deuteron ([Formula: see text]–[Formula: see text]) structure is considered for 6Li. Therefore, the DFC real central part is calculated by folding both [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] effective interaction between target and nuclei over the cluster densities of the target and projectile. The derived renormalized potentials give a successful description of the data. The present results are in good agreement with the previous work. This agreement confirms the validity of the present methods to generate nucleus–nucleus optical potentials.


1995 ◽  
Vol 10 (38) ◽  
pp. 2915-2921 ◽  
Author(s):  
V.P. MIKHAILYUK

The differential cross-sections for elastic scattering of deuterons on 12 C and 16 O nuclei at 700 MeV are calculated on the basis of multiple diffraction scattering theory and the α-cluster model with dispersion. For d−12 C scattering it was shown that the results of the calculations by the model, when the effects related with the deuteron structure included via deuteron-α amplitude are in better agreement with the experimental data than those by the model, in which incident deuteron is considered as composed of neutron and proton.


1973 ◽  
Vol 51 (20) ◽  
pp. 2197-2201 ◽  
Author(s):  
P. W. Martin ◽  
R. McFadden ◽  
B. L. White

The differential cross sections for 4.3 MeV neutrons elastically scattered from natural samples of U, Bi, and Pb have been measured at laboratory angles of 5, 10, and 15°. In the case of uranium, the data are consistent with calculations based on the nuclear optical model and known electromagnetic interactions. Less satisfactory agreement to the data is obtained in the cross section measurements for lead and bismuth.


2018 ◽  
Vol 64 (2) ◽  
pp. 149 ◽  
Author(s):  
M. Aygun

In this work, we examine the elastic scattering cross sections of 13C on 12C, 16O, 28Si and 208Pb target nuclei at different incident energies. For the first time, we apply six types of proximity potentials such as Broglia andWinther 1991 (BW 91), AageWinther (AW95), Christensen and Winther 1976 (CW 76), Bass 1973 (Bass 73), Bass 1977 (Bass 77) and Bass 1980 (Bass 80) in order to obtain the real part of the optical potential. The imaginary part is taken as the Woods-Saxon potential. Theoretical results are compared with each other as well as the experimental data.


Sign in / Sign up

Export Citation Format

Share Document