CONSISTENT THREE-BODY FORCE WITH BONN B POTENTIAL AND NEUTRON STAR STRUCTURE

2010 ◽  
Vol 19 (08n09) ◽  
pp. 1727-1733 ◽  
Author(s):  
Z. H. LI ◽  
U. LOMBARDO ◽  
H.-J. SCHULZE ◽  
W. ZUO

Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Δ(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities, the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.

2008 ◽  
Vol 23 (27n30) ◽  
pp. 2455-2458
Author(s):  
MASATOSHI TAKANO ◽  
HIROAKI KANZAWA ◽  
KAZUHIRO OYAMATSU ◽  
KOHSUKE SUMIYOSHI

The equation of state (EOS) is calculated for uniform nuclear matter at zero and finite temperatures with the variational method. Making use of uncertainty of the three-body nuclear force, adjustable parameters in the nuclear EOS are tuned so that the Thomas-Fermi calculations for β-stable nuclei with the EOS reproduce the empirical data. The calculated nuclear properties imply that larger symmetry energy of the EOS is preferable to reproduce the empirical β-stability line. The expectation value of the nuclear Hamiltonian caused by the 2π-exchange three-body nuclear force is uncertain and related to the symmetry energy.


2019 ◽  
Vol 21 ◽  
pp. 44
Author(s):  
Ch. C. Moustakidis

We study the effect of nuclear equation of state on the tidal polarizability of neutron stars. The predicted equations of state for the β-stable nuclear matter are parameterized by varying the slope L of the symmetry energy at saturation density on the interval 65 MeV≤L≤115 MeV. The effects of the density dependence of the nuclear symmetry energy on the neutron star tidal polarizability are presented and analyzed. A comparison of theoretical predictions with the recent observation predictions is also performed and analyzed.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 256-271
Author(s):  
WEI ZUO

We report our research work on the equation of state (EOS) and single-particle (s.p.) properties of neutron-rich nuclear matter within the framework of the Brueckner–Bethe–Goldstone approach extended to include a microscopic three-body force (TBF). We show that inclusion of the TBF provide a largely improvement of the predicted nuclear matter saturation properties and leads to a strongly stiffening of the density dependence of symmetry energy at high densities. The neutron effective mass turns out to be greater than the proton one in neutron-rich nuclear matter in both cases of including and not including the TBF. The TBF induces a strongly repulsive rearrangement contribution to nucleon s.p. potential at high densities and large momenta. The TBF rearrangement contribution reduces considerably the attraction of the neutron and proton s.p. potentials and enhances strongly their momentum-dependence at high densities and high momenta. The TBF effect on nucleon superfluidity in neutron star matter has also been discussed.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 115
Author(s):  
Jin-Biao Wei ◽  
Fiorella Burgio ◽  
Hans-Josef Schulze

We study the cooling of isolated neutron stars with particular regard to the importance of nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock approach is used together with compatible neutron and proton pairing gaps. We then study the effect of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent description of all current cooling data can be achieved and a reasonable neutron star mass distribution can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer (BCS) gaps and no neutron 3P2 pairing.


2004 ◽  
Vol 69 (6) ◽  
Author(s):  
W. Zuo ◽  
Z. H. Li ◽  
A. Li ◽  
G. C. Lu

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2012 ◽  
Vol 8 (S291) ◽  
pp. 146-146
Author(s):  
David Nice

AbstractNeutron star masses can be inferred from observations of binary pulsar systems, particularly by the measurement of relativistic phenomena within these orbits. The observed distribution of masses can be used to infer or constrain the equation of state for nuclear matter and to study astrophysical processes such as supernovae and binary star evolution. In this talk, I will review our present understanding of the neutron star mass distribution with an emphasis on the observational data.


Sign in / Sign up

Export Citation Format

Share Document