Positive-parity states and electromagnetic transitions of odd-A Pr and Ce isotopes

2020 ◽  
Vol 29 (05) ◽  
pp. 2050027
Author(s):  
Musa M. Mahdi ◽  
Falih H. Al-Khudair

Energy levels and electromagnetic transition probabilities of odd-mass [Formula: see text] and [Formula: see text] isotopes have been calculated using the interacting boson fermion model. The even–even [Formula: see text] isotopes have been used as the cores. In the model space, the bosons have angular momentum, [Formula: see text] ([Formula: see text]-boson) and [Formula: see text] ([Formula: see text]-boson) have been considered, while the nine protons for [Formula: see text] and 19–25 neutrons for [Formula: see text] are allowed to occupy the [Formula: see text] and [Formula: see text] single particle orbitals. The quasi-particle energies and occupation probabilities have been obtained by solving the BCS equation. According to the model space, the wave function for low-lying states has been investigated. The calculated results are in good agreement with the available experimental data.

2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


Author(s):  
Chengfu Mu ◽  
Dali Zhang

Abstract We have investigated the low-lying energy spectrum and electromagnetic transition strengths in even-even $^{76}$Se using the proton-neutron interacting boson model (IBM-2). The theoretical calculation for the energy levels and $E2$ and $M1$ transition strengths is in good agreement with the experimental data. Especially, the excitation energy and $E2$ transition of $0^+_2$ state, which is intimately associated with shape coexistence, can be well reproduced. The analysis on low-lying states and some key structure indicators indicates that there is a coexistence between spherical shape and $\gamma$-soft shape in $^{76}$Se.


2021 ◽  
Vol 14 (1) ◽  
pp. 25-33

Abstract: In this paper, calculations of 90,91,92Y isotopes have been performed by application of nuclear shell model in the Gloeckner (Gl) model space for two different interactions (Gloeckner (Gl) and Gloeckner pulse bare G-Matrix (Glb) using Oxbash code. The energy levels are compared and discussed with experimental data and based on our results, many predictions about spins and parity were observed between experimental states, in addition to the predictions of low-energy spectra and B (E2; ↓) and B (M1; ↓)) transitional strengths in the isotopes 90,91,92Y. These predictions were not known in the experimental data. Keywords: Energy levels, Transition probabilities, Oxbash code.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Mahmut Böyükata ◽  
İhsan Uluer

AbstractThe even-even Selenium isotopes in the A∼80 mass region and the general features of its structure have been investigated within the framework of the interacting boson model-2. The neutron proton version of the model has been applied to the Se (A=74 to 80) isotopes with emphasis on the description of the 01+, 21+, 02+, 22+ and 41+ states. The energy levels, B(E2)and B(M1)electromagnetic transition probabilities were calculated. The results of these calculations were compared with previous experimental results and were shown to be in good agreement.


2018 ◽  
Vol 63 (3) ◽  
pp. 189 ◽  
Author(s):  
A. K. Hasan

The shell model (SM) is used to calculate the energy levels and transition probabilities B(E2) for 18,19,20 O isotopes. Two interactions (USDA and USDB) are used in the SDPN model space. We assume that all possible many-nucleon configurations are defined by the 0d5/2, 1s1/2, and d3/2 states that are higher than in 16 O doubly magic nucleus. The available empirical data are in a good agreement with theoretical energy levels predictions. Spins and parities were affirmed for new levels, and the transition probabilities B(E2; ↓) are predicted.


Author(s):  
Ali Noraldini ◽  
Mahla Bagheri ◽  
Saeed Mohammadi

Coulomb Displacement Energies in mirror nuclei 25Mg, 25Al have been calculated using shell model code OXBASH [1] and compared with experimental results. The code calculations were done in the USD model space with the W Hamiltonian [2]. The OXBASH code which is based on famous nuclear model, the shell model, deals with evaluating energy levels in nuclei. A comparison had been made between our results and the available experimental data [3] to test theoretical shell model description of nuclear structure in mirror nuclei. The energy states of mirror nuclei are almost identical, except for the small effects due to Coulomb interaction where the symmetry in being broken.  Energy spectrum calculated with this code was in good agreement with the published experimental data [3].  


2019 ◽  
Vol 34 (09) ◽  
pp. 1950073 ◽  
Author(s):  
Mohsen Mousavi ◽  
Mohammad Reza Shojaei

In this study, some static properties of odd isotopes of Ca were investigated in the non-relativistic shell model. We also suggested a novel suitable local potential model for the non-microscopic investigation of the mentioned nuclei. We modeled the odd [Formula: see text]Ca nuclei as doubly-magic isotopes with further nucleons (valence) in the [Formula: see text] and [Formula: see text] levels. Then, the modified Eckart potential plus Hulthen potential were chosen for the interaction between core and nucleons. We also used the parametric Nikiforov–Uvarov method to calculate the values of energy, the radius of charge and wave function. The obtained results showed a good agreement with the experimental data, so this model is applicable for the similar nuclei.


2020 ◽  
Vol 65 (1) ◽  
pp. 3
Author(s):  
A. K. Hasan ◽  
F. H. Obeed ◽  
A. N. Rahim

The energy levels and transition probabilities B(E2; ↓) i B(M1; ↓) have been investigated for 21,23Na isotopes by using the (USDA and USDB) interactions in the (sd-shell) model space. In the calculations of the shell model, it has been assumed that all possible many-nucleon configurations are specified by the (0d5/2, 1s1/2 i 0d3/2) states above 16O doubly magic nucleus. The available empirical data are in a good agreement with predictions of theoretical energy levels. Spins and parities are affirmed for new levels, transition probabilities B(E2; ↓) and B(M1; ↓) are predicted as well.


1999 ◽  
Vol 08 (01) ◽  
pp. 17-38 ◽  
Author(s):  
D. BUCURESCU ◽  
I. CĂTA-DANIL ◽  
M. IVAŞCU ◽  
N. MĂRGINEAN ◽  
L. STROE ◽  
...  

The lifetimes of twelve low spin excited states in 73 As , below 2 MeV excitation, have been measured with the DSA method in the 73 Ge ( p , n γ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.


Author(s):  
Elham Abdalrahem Bin Selim ◽  
Mohammed Hadi Al–Douh ◽  
Hassan Hadi Abdullah ◽  
Dahab Salim Al–Nohey

Two bis-Schiff Bases 1 and 2 are ligands that can coordinate with manganese metal to form stable complexes and have biological activity. Thermodynamic parameters, HOMO-LUMO energy levels and FTIR spectra of two ligands have been computed using B3LYP/6-311++G(d,p) functional of the DFT calculations. Both ligands are favored thermodynamically, and the ligand 1 has been shown to be more stable than ligand 2. The Polarizability values of two ligands have been investigated. The results refer that ligand 2 interacts earlier than ligand 1 to the metal ion. The FTIR spectra of two ligands have been evaluated. All results show the good agreement between the theoretical and experimental data.


Sign in / Sign up

Export Citation Format

Share Document