scholarly journals Calculating Energy Levels in 25Mg/25Al Mirror Nuclei

Author(s):  
Ali Noraldini ◽  
Mahla Bagheri ◽  
Saeed Mohammadi

Coulomb Displacement Energies in mirror nuclei 25Mg, 25Al have been calculated using shell model code OXBASH [1] and compared with experimental results. The code calculations were done in the USD model space with the W Hamiltonian [2]. The OXBASH code which is based on famous nuclear model, the shell model, deals with evaluating energy levels in nuclei. A comparison had been made between our results and the available experimental data [3] to test theoretical shell model description of nuclear structure in mirror nuclei. The energy states of mirror nuclei are almost identical, except for the small effects due to Coulomb interaction where the symmetry in being broken.  Energy spectrum calculated with this code was in good agreement with the published experimental data [3].  

2021 ◽  
Vol 19 (5) ◽  
pp. 61-67
Author(s):  
Ali Khalaf Hasan ◽  
Dalal Naji Hameed

In the construction of this kind of shell model, we take the residual interaction to be modified surface delta interaction MSDI. We have studied the excitation energies of the 50Ca a nucleus, which contain two neutrons outside closed shell of the 48Ca. Neutrons are in the model space pfpg. The energy levels and angular momentum of all possible cases were investigated. Thereby, we have effectively utilized a theoretical process to find link among the traditional coupling angle and energy levels at different orbital within neutron - neutron interaction. We observe the energy stages appear to follow two overall functions which depend on the classical coupling angles but are unconstrained of angular momentum I. We find out that our results agree with the experimental data.


Author(s):  
Chengfu Mu ◽  
Dali Zhang

Abstract We have investigated the low-lying energy spectrum and electromagnetic transition strengths in even-even $^{76}$Se using the proton-neutron interacting boson model (IBM-2). The theoretical calculation for the energy levels and $E2$ and $M1$ transition strengths is in good agreement with the experimental data. Especially, the excitation energy and $E2$ transition of $0^+_2$ state, which is intimately associated with shape coexistence, can be well reproduced. The analysis on low-lying states and some key structure indicators indicates that there is a coexistence between spherical shape and $\gamma$-soft shape in $^{76}$Se.


2018 ◽  
Vol 63 (3) ◽  
pp. 189 ◽  
Author(s):  
A. K. Hasan

The shell model (SM) is used to calculate the energy levels and transition probabilities B(E2) for 18,19,20 O isotopes. Two interactions (USDA and USDB) are used in the SDPN model space. We assume that all possible many-nucleon configurations are defined by the 0d5/2, 1s1/2, and d3/2 states that are higher than in 16 O doubly magic nucleus. The available empirical data are in a good agreement with theoretical energy levels predictions. Spins and parities were affirmed for new levels, and the transition probabilities B(E2; ↓) are predicted.


2015 ◽  
Vol 30 (19) ◽  
pp. 1550093 ◽  
Author(s):  
Vikas Kumar ◽  
P. C. Srivastava ◽  
Irving O. Morales

In this paper, we report comprehensive set of shell model calculations for arsenic isotopes. We performed shell model calculations with two recent effective interactions JUN45 and jj44b. The overall results for the energy levels and magnetic moments are in rather good agreement with the available experimental data. We have also reported competition of proton- and neutron-pair breakings analysis to identify which nucleon pairs are broken to obtain the total angular momentum of the calculated states. Further theoretical development is needed by enlarging model space by including [Formula: see text] and [Formula: see text] orbitals.


2020 ◽  
Vol 18 ◽  
pp. 58-65
Author(s):  
Ali K. Hasan ◽  
Wafaa Al-mudhafar

In this study, the nuclear shell model was applied to calculate the energy levels and reduced electric quadruple transition probability B(E2) for 36Si isotope using the OXBASH code within (1d3/2, 2s1/2, 2p3/2, 1f7/2) model space and using (HASN, ZBM2 and VPTH) interactions, As this isotope contains eight neutrons outside 28Si  core in the region and when comparing the results of this study with the values. Available process compatibility was acceptable. There was good agreement at level 2+1, and angular momentum and parity were confirmed for levels 4+, 6+, and for all interactions, and the value of B(E2) corresponds well with the only practical value available for the transition .


2020 ◽  
Vol 29 (05) ◽  
pp. 2050027
Author(s):  
Musa M. Mahdi ◽  
Falih H. Al-Khudair

Energy levels and electromagnetic transition probabilities of odd-mass [Formula: see text] and [Formula: see text] isotopes have been calculated using the interacting boson fermion model. The even–even [Formula: see text] isotopes have been used as the cores. In the model space, the bosons have angular momentum, [Formula: see text] ([Formula: see text]-boson) and [Formula: see text] ([Formula: see text]-boson) have been considered, while the nine protons for [Formula: see text] and 19–25 neutrons for [Formula: see text] are allowed to occupy the [Formula: see text] and [Formula: see text] single particle orbitals. The quasi-particle energies and occupation probabilities have been obtained by solving the BCS equation. According to the model space, the wave function for low-lying states has been investigated. The calculated results are in good agreement with the available experimental data.


2018 ◽  
Vol 63 (7) ◽  
pp. 579 ◽  
Author(s):  
D. N. Hameed ◽  
A. K. Hasan

The modified surface delta-interaction model is applied to calculate the energy levels of 16N and 16F) nuclei. The good agreement between theoretical and experimental data is attained for excitation energies. This indicates that the shell model describes properly the structure of these nuclei.


2020 ◽  
Vol 65 (1) ◽  
pp. 3
Author(s):  
A. K. Hasan ◽  
F. H. Obeed ◽  
A. N. Rahim

The energy levels and transition probabilities B(E2; ↓) i B(M1; ↓) have been investigated for 21,23Na isotopes by using the (USDA and USDB) interactions in the (sd-shell) model space. In the calculations of the shell model, it has been assumed that all possible many-nucleon configurations are specified by the (0d5/2, 1s1/2 i 0d3/2) states above 16O doubly magic nucleus. The available empirical data are in a good agreement with predictions of theoretical energy levels. Spins and parities are affirmed for new levels, transition probabilities B(E2; ↓) and B(M1; ↓) are predicted as well.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


Sign in / Sign up

Export Citation Format

Share Document