FUZZY CLUSTERING WITH WEIGHTING OF DATA VARIABLES

Author(s):  
ANNETTE KELLER ◽  
FRANK KLAWONN

We introduce an objective function-based fuzzy clustering technique that assigns one influence parameter to each single data variable for each cluster. Our method is not only suited to detect structures or groups of data that are not uniformly distributed over the structure's single domains, but gives also information about the influence of individual variables on the detected groups. In addition, our approach can be seen as a generalization of the well-known fuzzy c-means clustering algorithm.

Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 158
Author(s):  
Tran Dinh Khang ◽  
Nguyen Duc Vuong ◽  
Manh-Kien Tran ◽  
Michael Fowler

Clustering is an unsupervised machine learning technique with many practical applications that has gathered extensive research interest. Aside from deterministic or probabilistic techniques, fuzzy C-means clustering (FCM) is also a common clustering technique. Since the advent of the FCM method, many improvements have been made to increase clustering efficiency. These improvements focus on adjusting the membership representation of elements in the clusters, or on fuzzifying and defuzzifying techniques, as well as the distance function between elements. This study proposes a novel fuzzy clustering algorithm using multiple different fuzzification coefficients depending on the characteristics of each data sample. The proposed fuzzy clustering method has similar calculation steps to FCM with some modifications. The formulas are derived to ensure convergence. The main contribution of this approach is the utilization of multiple fuzzification coefficients as opposed to only one coefficient in the original FCM algorithm. The new algorithm is then evaluated with experiments on several common datasets and the results show that the proposed algorithm is more efficient compared to the original FCM as well as other clustering methods.


Author(s):  
WEIXIN XIE ◽  
JIANZHUANG LIU

This paper presents a fast fuzzy c-means (FCM) clustering algorithm with two layers, which is a mergence of hard clustering and fuzzy clustering. The result of hard clustering is used to initialize the c cluster centers in fuzzy clustering, and then the number of iteration steps is reduced. The application of the proposed algorithm to image segmentation based on the two dimensional histogram is provided to show its computational efficience.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiashun Chen ◽  
Hao Zhang ◽  
Dechang Pi ◽  
Mehmed Kantardzic ◽  
Qi Yin ◽  
...  

Fuzzy C-means (FCM) is an important clustering algorithm with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. Especially, parameters in FCM have influence on clustering results. However, a lot of FCM algorithm did not solve the problem, that is, how to set parameters. In this study, we present a kind of method for computing parameters values according to role of parameters in the clustering process. New parameters are assigned to membership and typicality so as to modify objective function, on the basis of which Lagrange equation is constructed and iterative equation of membership is acquired, so does the typicality and center equation. At last, a new possibilistic fuzzy C-means based on the weight parameter algorithm (WPFCM) was proposed. In order to test the efficiency of the algorithm, some experiments on different datasets are conducted to compare WPFCM with FCM, possibilistic C-means (PCM), and possibilistic fuzzy C-means (PFCM). Experimental results show that iterative times of WPFCM are less than FCM about 25% and PFCM about 65% on dataset X12. Resubstitution errors of WPFCM are less than FCM about 19% and PCM about 74% and PFCM about 10% on the IRIS dataset.


2014 ◽  
Vol 989-994 ◽  
pp. 1489-1492 ◽  
Author(s):  
Hong Wei Han ◽  
Lin Tian ◽  
Jia Qing Miao

Fuzzy c-means (FCM) algorithm is an unsupervised clustering algorithm for image segmentation, and has been widely applied because the segmentation results are consistent with human visual characteristics. Enhanced fuzzy c-means clustering (EnFCM) algorithm is the improved FCM algorithm, which reduces the computational complexity. But, both FCM algorithm and EnFCM algorithm, clustering number still need to be manually determined. This paper, in order to realize the automation degree of algorithm, presents an improved algorithm. It first analyzes the histogram, then automatically determines the clustering number and peak value of each class through use of the peak point detection technology, finally segments image by using EnFCM algorithm. Experiments show that this method is a kind of faster fuzzy clustering algorithm with automatic classification ability for image segmentation.


2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaqin Zhang ◽  
Jingan Wang ◽  
Le Xing ◽  
Hui’e Liang

As the precious cultural heritage of the Chinese nation, traditional costumes are in urgent need of scientific research and protection. In particular, there are scanty studies on costume silhouettes, due to the reasons of the need for cultural relic protection, and the strong subjectivity of manual measurement, which limit the accuracy of quantitative research. This paper presents an automatic measurement method for traditional Chinese costume dimensions based on fuzzy C-means clustering and silhouette feature point location. The method is consisted of six steps: (1) costume image acquisition; (2) costume image preprocessing; (3) color space transformation; (4) object clustering segmentation; (5) costume silhouette feature point location; and (6) costume measurement. First, the relative total variation model was used to obtain the environmental robustness and costume color adaptability. Second, the FCM clustering algorithm was used to implement image segmentation to extract the outer silhouette of the costume. Finally, automatic measurement of costume silhouette was achieved by locating its feature points. The experimental results demonstrated that the proposed method could effectively segment the outer silhouette of a costume image and locate the feature points of the silhouette. The measurement accuracy could meet the requirements of industrial application, thus providing the dual value of costume culture research and industrial application.


Sign in / Sign up

Export Citation Format

Share Document