fuzzy c means clustering
Recently Published Documents


TOTAL DOCUMENTS

1756
(FIVE YEARS 526)

H-INDEX

49
(FIVE YEARS 9)

2022 ◽  
Vol 53 (3) ◽  
pp. 466-486
Author(s):  
Cindy Cindy ◽  
Cynthia Cynthia ◽  
Valentino Vito ◽  
Devvi Sarwinda ◽  
Bevina Desjwiandra Handari ◽  
...  

In Indonesia, Dengue incidence tends to increase every year but has been fluctuating in recent years. The potential for Dengue outbreaks in DKI Jakarta, the capital city, deserves serious attention. Weather factors are suspected of being associated with the incidence of Dengue in Indonesia. This research used weather and Dengue incidence data for five regions of DKI Jakarta, Indonesia, from December 30, 2008, to January 2, 2017. The study used a clustering approach on time-series and non-time-series data using K-Medoids and Fuzzy C-Means Clustering. The clustering results for the non-time-series data showed a positive correlation between the number of Dengue incidents and both average relative humidity and amount of rainfall. However, Dengue incidence and average temperature were negatively correlated. Moreover, the clustering implementation on the time-series data showed that rainfall patterns most closely resembled those of Dengue incidence. Therefore, rainfall can be used to estimate Dengue incidence. Both results suggest that the government could utilize weather data to predict possible spikes in DHF incidence, especially when entering the rainy season and alert the public to greater probability of a Dengue outbreak.


2022 ◽  
Vol 10 (4) ◽  
pp. 544-553
Author(s):  
Ratna Kurniasari ◽  
Rukun Santoso ◽  
Alan Prahutama

Effective communication between the government and society is essential to achieve good governance. The government makes an effort to provide a means of public complaints through an online aspiration and complaint service called “LaporGub..!”. To group incoming reports easier, the topic of the report is searched by using clustering. Text Mining is used to convert text data into numeric data so that it can be processed further. Clustering is classified as soft clustering (fuzzy) and hard clustering. Hard clustering will divide data into clusters strictly without any overlapping membership with other clusters. Soft clustering can enter data into several clusters with a certain degree of membership value. Different membership values make fuzzy grouping have more natural results than hard clustering because objects at the boundary between several classes are not forced to fully fit into one class but each object is assigned a degree of membership. Fuzzy c-means has an advantage in terms of having a more precise placement of the cluster center compared to other cluster methods, by improving the cluster center repeatedly. The formation of the best number of clusters is seen based on the maximum silhouette coefficient. Wordcloud is used to determine the dominant topic in each cluster. Word cloud is a form of text data visualization. The results show that the maximum silhouette coefficient value for fuzzy c-means clustering is shown by the three clusters. The first cluster produces a word cloud regarding road conditions as many as 449 reports, the second cluster produces a word cloud regarding covid assistance as many as 964 reports, and the third cluster produces a word cloud regarding farmers fertilizers as many as 176 reports. The topic of the report regarding covid assistance is the cluster with the most number of members. 


Author(s):  
P. Vijayalakshmi ◽  
K. Muthumanickam ◽  
G. Karthik ◽  
S. Sakthivel

Adenomyosis is an abnormality in the uterine wall of women that adversely affects their normal life style. If not treated properly, it may lead to severe health issues. The symptoms of adenomyosis are identified from MRI images. It is a gynaecological disease that may lead to infertility. The presence of red dots in the uterus is the major symptom of adenomyosis. The difference in the extent of these red dots extracted from MRI images shows how significant the deviation from normality is. Thus, we proposed an entroxon-based bio-inspired intelligent water drop back-propagation neural network (BIWDNN) model to discover the probability of infertility being caused by adenomyosis and endometriosis. First, vital features from the images are extracted and segmented, and then they are classified using the fuzzy C-means clustering algorithm. The extracted features are then attributed and compared with a normal person’s extracted attributes. The proposed BIWDNN model is evaluated using training and testing datasets and the predictions are estimated using the testing dataset. The proposed model produces an improved diagnostic precision rate on infertility.


Author(s):  
Jing Wang ◽  
Feng Xu

In order to realize the optimal access of dynamic spatial database, a component-based optimal access method of dynamic spatial database is proposed. The statistical information distribution model for storing the characteristic data of association rules is constructed in the dynamic spatial database. The fuzzy information features are extracted by using the dynamic component fusion clustering analysis method. Combined with the distributed association feature quantity, the fusion scheduling is carried out to control the dynamic information clustering. Combined with fuzzy c-means clustering analysis method, dynamic attribute classification analysis is carried out. The dynamic component block matching model is used for update iterative optimization, and the optimal access to the dynamic spatial database is realized in the cluster center. Simulation results show that this method has strong adaptability to the optimal access of dynamic spatial database, and has high accuracy and good convergence for data information extraction in dynamic spatial database.


2022 ◽  
Author(s):  
Haider Mustafa Mueen ◽  
A. Ghazikhani ◽  
Yasir Abdul Zahra Flaiyh Alaabedi

2022 ◽  
Vol 19 (3) ◽  
pp. 2471-2488
Author(s):  
Wenjun Xu ◽  
◽  
Zihao Zhao ◽  
Hongwei Zhang ◽  
Minglei Hu ◽  
...  

<abstract> <p>It is vital for the annotation of uncharacterized proteins by protein function prediction. At present, Deep Neural Network based protein function prediction is mainly carried out for dataset of small scale proteins or Gene Ontology, and usually explore the relationships between single protein feature and function tags. The practical methods for large-scale multi-features protein prediction still need to be studied in depth. This paper proposes a DNN based protein function prediction approach IGP-DNN. This method uses Grasshopper Optimization Algorithm (GOA) and Intuitionistic Fuzzy c-Means clustering (IFCM) based protein function modules extracting algorithm to extract the features of protein modules, utilizing Kernel Principal Component Analysis (KPCA) method to reduce the dimensionality of the protein attribute information, and integrating module features and attribute features. Inputting integrated data into DNN through multiple hidden layers to classify proteins and predict protein functions. In the experiments, the F-measure value of IGP-DNN on the DIP dataset reaches 0.4436, which shows better performance.</p> </abstract>


2021 ◽  
pp. 551-559
Author(s):  
Ahmed Shihab Ahmed ◽  
Omer Nather Basheer ◽  
Hussein Ali Salah

Many of the researches have been successful in the field of computer-aided diagnosis because of the important results the intelligent computing approaches have achieved in this field. In this paper the robust classification method is presented, that attempts to classify the tissue suspicion region as normal or not normal by using a Fuzzy Inference System (FIS) using the Fuzzy C-Mean (FCM) clustering for fuzzification of the Gray-Level Co-Occurrence Matrix (GLCM) feature and a match shape function for fuzzification of matrix shape, then by using (T-norm) generate 729 rules (243 rules based on normal DB case, 243 rules based on benign case, 243 rules based on malignant case), after that the best Eighteen rules are selected (best 6 rules based on normal DB case, best 6 rules based on benign DB case, best 6 rules based on malignant DB case) by using genetic algorithm, then make summation for each group if the summation of 6 rules based on normal DB is greater than other summation of two group (best 6 rules based on benign DB case and best 6 rules based on malignant DB case) that mean resulted of the classification step is normal. The model approved efficiency classification rate of 97.5% of input dataset image.


Sign in / Sign up

Export Citation Format

Share Document