ADHESION CHARACTERISTICS ON ANODIZED TITANIUM AND ITS DURABILITY UNDER AGGRESSIVE ENVIRONMENTS

2016 ◽  
Vol 23 (05) ◽  
pp. 1650033 ◽  
Author(s):  
SABBIR AHMED ◽  
DEBABRATA CHAKRABARTY ◽  
SUBROTO MUKHERJEE ◽  
SHANTANU BHOWMIK

In this investigation, an attempt has been made to improve the interfacial adhesion characteristics of titanium (Ti) surface at elevated temperature and in aqueous salt solution. In order to ensure the presence of titanium oxide coating on the surface of titanium, anodization on titanium was carried out by sodium hydroxide. This oxide coating etches the surfaces of titanium. These etching surfaces of titanium increase the surface energy and surface roughness of the titanium. Physicochemical characteristics of surface modified titanium were carried out by X-ray photoelectron spectroscopy (XPS) study and the results reveal that there is a significant increase in oxygen functionalities due to anodization. The oxide etching on the surface of anodized titanium is further confirmed by scanning electron microscopy (SEM) study. The contact angle and surface energy are measured by the use of two liquids namely water and glycerol. It is observed that the formation of oxide not only improves the surface energy of titanium but also protects the surface of titanium when exposed to aggressive environments. The lap-shear tensile strengths of two anodized titanium surfaces were fabricated by adhesive. There has been significant improvement in the adhesive bond strength, and subsequently in the durability of adhesive bonded joint, of titanium when exposed to aggressive environments.

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1056
Author(s):  
Greg D. Learn ◽  
Emerson J. Lai ◽  
Horst A. von Recum

Low surface energy substrates, which include many plastics and polymers, present challenges toward achieving uniform, adherent coatings, thus limiting intended coating function. These inert materials are common in various applications due to favorable bulk, despite suboptimal surface, properties. The ability to functionally coat low surface energy substrates holds broad value for uses across medicine and industry. Cyclodextrin-based materials represent an emerging, widely useful class of coatings, which have previously been explored for numerous purposes involving sustained release, enhanced sorption, and reversible reuse thereof. In this study, substrate exposure to nonthermal plasma was explored as a novel means to improve uniformity and adherence of cyclodextrin-based polyurethane coatings upon unreceptive polypropylene substrates. Plasma effects on substrates were investigated using contact angle goniometry and X-ray photoelectron spectroscopy (XPS). Plasma impact on coating uniformity was assessed through visualization directly and microscopically. Plasma effects on coating adhesion and bonding were studied with mechanical lap-shear testing and XPS, respectively. Substrate surface wettability and oxygen content increased with plasma exposure, and these modifications were associated with improved coating uniformity, adhesion, and interfacial covalent bonding. Findings demonstrate utility of, and elucidate mechanisms behind, plasma-based surface activation for improving coating uniformity, adherence, and performance on inert polymeric substrates.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
A. Pardo ◽  
S. Feliú ◽  
M. C. Merino ◽  
R. Arrabal ◽  
E. Matykina

The chemical changes that take place on the rare earth treated surface of the A361 aluminium alloy exposed to air at temperatures between 100 and500∘Chave been examined using X-ray photoelectron spectroscopy (XPS). The most notable features discussed in this work are the disappearance of Mg and Si signals at the tested temperatures and disappearance of the Ce signal at temperatures of 400–500∘C. The biphasic microstructure of the A361 alloy, constituted by close to 12 wt% Si and the Al matrix, plays an important role in many of the results obtained. The notable growth of aluminium oxide across the conversion coating in the case of the Ce-treated surface is related to the structural transformation experienced by the cerium oxide coating at 400–500∘C.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Min Liu ◽  
Hongmei Li ◽  
Yangsu Zeng

Tungsten trioxide (WO3) was surface modified with Cu(II) nanoclusters and titanium dioxide (TiO2) nanopowders by using a simple impregnation method followed by a physical combining method. The obtained nanocomposites were studied by scanning electron microscope, X-ray photoelectron spectroscopy spectra, UV-visible light spectra, and photoluminescence, respectively. Although the photocatalytic activity of WO3was negligible under visible light irradiation, the visible light photocatalytic activity of WO3was drastically enhanced by surface modification of Cu(II) nanoclusters and TiO2nanopowders. The enhanced photocatalytic activity is due to the efficient charge separation by TiO2and Cu(II) nanoclusters functioning as cocatalysts on the surface. Thus, this simple strategy provides a facile route to prepare efficient visible-light-active photocatalysts for practical application.


2012 ◽  
Vol 1376 ◽  
Author(s):  
P. Silva-Bermudez ◽  
S. Muhl ◽  
M. Rivera ◽  
S. E. Rodil

ABSTRACTIn the present work, the adsorption of albumin and fibrinogen on Ta, Nb, Ti and Zr oxidesthin films deposited on Si (100) wafers by magnetron sputtering was studied in order to get a better understanding of the correlation among the surface properties of these oxides and the protein adsorption phenomena on their surfaces. The surface energy, hydrophobicity, chemical composition, roughness and atomic order of the films were characterized. The films were immersedfor 45 minutes in single protein solutions; either albumin or fibrinogenand the adsorbed protein layer on the films was studied ex-situ in a dry ambient using bothX-ray photoelectron spectroscopy and atomic force microscopy.The adsorption of albumin and fibrinogen on the films modified the surface morphology and decreased the surface roughness for all the four different metal oxides. The XPS results confirmed the presence of the protein on the surface of the films and showed that the two proteins studied were adsorbed without undergoing a major chemical decomposition. A correlation between the surface roughness,the polar component of the surface energy of the films and the atomic percentage of nitrogen on the films after protein adsorption, an indirect signal of the amount of protein adsorbed, was found for albumin and fibrinogen adsorption on Ta, Nb and Ti oxides; the largest the roughness or the polar component the largest amount of adsorbed protein.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 979 ◽  
Author(s):  
Chunfang Zhu ◽  
Haitao Yang ◽  
Hongbo Liang ◽  
Zhengyue Wang ◽  
Jun Dong ◽  
...  

Low surface energy materials have attracted much attention due to their properties and various applications. In this work, we synthesized and characterized a series of ultraviolet (UV)-curable fluorinated siloxane polymers with various fluorinated acrylates—hexafluorobutyl acrylate, dodecafluoroheptyl acrylate, and trifluorooctyl methacrylate—grafted onto a hydrogen-containing poly(dimethylsiloxane) backbone. The structures of the fluorinated siloxane polymers were measured and confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. Then the polymers were used as surface modifiers of UV-curable commercial polyurethane (DR-U356) at different concentrations (1, 2, 3, 4, 5, and 10 wt %). Among three formulations of these fluorinated siloxane polymers modified with DR-U356, hydrophobic states (91°, 92°, and 98°) were obtained at low concentrations (1 wt %). The DR-U356 resin is only in the hydrophilic state at 59.41°. The fluorine and siloxane element contents were investigated by X-ray photoelectron spectroscopy and the results indicated that the fluorinated and siloxane elements were liable to migrate to the surface of resins. The results of the friction recovering assays showed that the recorded contact angles of the series of fluorinated siloxane resins were higher than the original values after the friction-annealing progressing.


2019 ◽  
Vol 55 (2) ◽  
pp. 180-184
Author(s):  
A. Yu. Teterin ◽  
Yu. A. Teterin ◽  
K. Yu. Maslakov ◽  
E. N. Murav’ev ◽  
V. F. Solinov ◽  
...  

2020 ◽  
Vol 42 (10) ◽  
pp. 472-481
Author(s):  
Hee So Oh ◽  
Jae-Soo Chang

Objectives : The physicochemical characteristics of Mg-biochar composites derived from kelp and pine after pretreatment with MgCl2 were analyzed, and their adsorption capacities for an anionic dye, Congo red (CR), were evaluated.Methods : After pretreating 60 g of kelp and pine sawdust in 1 L of 0.1 M MgCl2・6H2O, the raw materials were pyrolyzed at 500℃ to produce Mg-biochar composites (kelp based KB-Mg and pine based PB-Mg). The fundamental physicochemical characteristics of the Mg-biochar composites were examined, and their adsorption capacities for CR were investigated using different initial pH values, adsorption kinetic models, and adsorption isotherm models.Results and discussion : The Mg-biochar composites showed the development of uniform deposits of Mg minerals primarily as MgO crystal on the surface by the surface modification with MgCl2. When the pristine biochars were surface-modified with MgCl2, their adsorption capacities for CR were significantly increased over the entire pH range tested. The CR adsorption process by all biochars was best described with the pseudo-first order kinetics model, and the adsorption isotherm characteristics were better described with the Langmuir isotherm model for all biochars. The Langmuir maximum adsorption capacities for KB-Mg and PB-Mg were 423.0 mg/g and 394.7 mg/g, respectively. It is suggested that the main mechanism for CR adsorption on the Mg-biochars is electrostatic attraction between CR and the biochars.Conclusions : The results showed that surface modification with MgCl2 could greatly enhance the CR adsorption capacity of biochars, and the results demonstrated the great potential of KB-Mg and PB-Mg for CR removal.


2020 ◽  
pp. 095400832095706
Author(s):  
Jennifer Vinodhini ◽  
K Sudheendra ◽  
Meera Balachandran ◽  
Shantanu Bhowmik

This investigation highlights argon plasma treatment on Poly-aryl-ether-ketone (PAEK) and carbon fibre (CF) surface. The PAEK and CF surface is modified for 300 sec and the change in physiochemical and mechanical properties were investigated through Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Contact angle, Atomic Force Microscope (AFM) and Tensile Test. FTIR of surface modified PAEK revealed the stretching of C-H, C=C and C=O functional groups. A reversal phenomenon of increased surface energy was observed through dynamic contact angle study of CF and to further examine the surface energy effect, AFM analysis on CF was carried out revealing increased roughness with numerous micro dents formation. PAEK/CF composite samples were fabricated through compression moulding technique. The change in mechanical properties due to surface modification were analysed through Tensile testing on surface modified PAEK/CF sample and untreated PAEK/CF samples. The surface treated PAEK/CF showed increased tensile strength than untreated PAEK/CF. The argon plasma treatment helped in creating depth striations that lead to better interlocking of resin matrix with the reinforced CF. The fracture surface was examined through Filed Emission Scanning Electron Microscope (FE-SEM) wherein the Micrographs of the tensile tested samples indicated failure of composite due to fibre breakage.


Sign in / Sign up

Export Citation Format

Share Document