STRUCTURAL PARAMETERS AND OPTOELECTRONIC PROPERTIES OF Mg-IV-V2 (IV=Si, Ge, Sn AND V=P, As) COMPOUNDS
Semiconductors are the backbone of the optoelectronic industry. Direct band gap materials in the visible energy region are highly desirable for the efficient optoelectronic applications. In this work, we have probed the structural, electronic and optical properties of Mg-IV-V2 (IV[Formula: see text]Si, Ge, Sn and V[Formula: see text]P, As) compounds by FP-LAPW calculations, based on density functional theory. Their crystal structure is chalcopyrite with space group of I-42d. The lattice constants of MgSiP2, MgSiAs2 and MgGeAs2 are consistent with experimental results. These compounds show semiconductor behavior with direct band gap ranging from 1.3–2.15[Formula: see text]eV. Optical properties were also investigated. Optical properties include real and imaginary parts of dielectric constant, energy loss function, refraction and reflection. Direct band gap nature and good response in the visible region of these compounds predict their usefulness in optoelectronic devices.