EVALUATION OF SURFACE ROUGHNESS PRODUCED BY NANOCUTTING COPPER STRUCTURE USING A LEAST SQUARE MEAN METHOD
This work performed molecular dynamic simulations to study the 2D profile and 3D surface topography in the nanometric cutting process. The least square mean method was used to model the evaluation criteria for the surface roughness at the nanometric scale. The result showed that the cutting speed was the most important factor influencing the spacing between the peaks, the sharpness of the peaks, and the randomness of the profile. The plastic deformation degree of the machined surface at the nanometric scale was significantly influenced by the cutting speed and depth of cut. The 2D and 3D surface roughness parameters exhibited a similar variation tendency, and the parameters Ra and Rq tended to increase gradually with an increase in the cutting speed and a decrease in the depth of cut. Finally, it is concluded that at the nanometric scale, the 3D surface roughness parameters could more accurately reflect the real surface characteristics than the 2D parameters.