Nonlinear surface waves propagating along composite waveguide consisting of nonlinear defocusing media separated by interfaces with nonlinear response
The nonlinear surface waves propagating along the ultra-thin-film layers with nonlinear properties separating three nonlinear media layers are considered. The model based on a stationary nonlinear Schrödinger equation with a nonlinear potential modeling the interaction of a wave with the interface in a short-range approximation is proposed. We concentrated on effects induced by the difference of characteristics of the layers and their two interfaces. The surface waves of three types exist in the system considered. The dispersion relations determining the dependence of surface waves energy on interface intensities and medium layer characteristics are obtained and analyzed. The localization energy is calculated in explicit form for many difference cases. The conditions of the wave localization on dependence of the layer and interface characteristics are derived. The surface waves with definite energies in specific cases existing only in the presence of the interface nonlinear response are found. All results are obtained in an explicit analytical form.