scholarly journals FAST COMPUTATION OF VANILLA PRICES IN TIME-CHANGED MODELS AND IMPLIED VOLATILITIES USING RATIONAL APPROXIMATIONS

2012 ◽  
Vol 15 (04) ◽  
pp. 1250031 ◽  
Author(s):  
MARTIJN PISTORIUS ◽  
JOHANNES STOLTE

We present a new numerical method to price vanilla options quickly in time-changed Brownian motion models. The method is based on rational function approximations of the Black-Scholes formula. Detailed numerical results are given for a number of widely used models. In particular, we use the variance-gamma model, the CGMY model and the Heston model without correlation to illustrate our results. Comparison to the standard fast Fourier transform method with respect to accuracy and speed appears to favour the newly developed method in the cases considered. We present error estimates for the option prices. Additionally, we use this method to derive a procedure to compute, for a given set of arbitrage-free European call option prices, the corresponding Black-Scholes implied volatility surface. To achieve this, rational function approximations of the inverse of the Black-Scholes formula are used. We are thus able to work out implied volatilities more efficiently than one can by the use of other common methods. Error estimates are presented for a wide range of parameters.

2015 ◽  
Vol 18 (06) ◽  
pp. 1550036 ◽  
Author(s):  
ELISA ALÒS ◽  
RAFAEL DE SANTIAGO ◽  
JOSEP VIVES

In this paper, we present a new, simple and efficient calibration procedure that uses both the short and long-term behavior of the Heston model in a coherent fashion. Using a suitable Hull and White-type formula, we develop a methodology to obtain an approximation to the implied volatility. Using this approximation, we calibrate the full set of parameters of the Heston model. One of the reasons that makes our calibration for short times to maturity so accurate is that we take into account the term structure for large times to maturity: We may thus say that calibration is not "memoryless," in the sense that the option's behavior far away from maturity does influence calibration when the option gets close to expiration. Our results provide a way to perform a quick calibration of a closed-form approximation to vanilla option prices, which may then be used to price exotic derivatives. The methodology is simple, accurate, fast and it requires a minimal computational effort.


2008 ◽  
Vol 16 (2) ◽  
pp. 67-94
Author(s):  
Byung Kun Rhee ◽  
Sang Won Hwang

Black-Scholes Imolied volatility (8SIV) has a few drawbacks. One is that the model Is not much successful in fitting the option prices. and It Is n야 guaranteed the model is correct one. Second. the usual tradition in using the BSIV is that only at-the-money Options are used. It is well-known that IV's of In-the-money or Qut-of-the-money ootions are much different from those estimated from near-the-money options. In this regard, a new model is confronted with Korean market data. Brittenxmes and Neuberger (2000) derive a formula for volatility which is a function of option prices‘ Since the formula is derived without using any option pricing model. volatility estimated from the formula is called model-tree implied volatillty (MFIV). MFIV overcomes the two drawbacks of BSIV. Jiang and Tian (2005) show that. with the S&P index Options (SPX), MFIV is suoerlor to historical volatility (HV) or BSIV in forecasting the future volatllity. In KOSPI 200 index options, when the forecasting performances are compared, MFIV is better than any other estimated volatilities. The hypothesis that MFIV contains all informations for realized volatility and the other volatilities are redundant is oot rejected in any cases.


2014 ◽  
Vol 17 (01) ◽  
pp. 1450002 ◽  
Author(s):  
MASAAKI FUKASAWA

We revisit robust replication theory of volatility derivatives and introduce a broader class which may be considered as the second generation of volatility derivatives. One of them is a swap contract on the quadratic covariation between an asset price and the model-free implied variance (MFIV) of the asset. It can be replicated in a model-free manner and its fair strike may be interpreted as a model-free measure for the covariance of the asset price and the realized variance. The fair strike is given in a remarkably simple form, which enable to compute it from the Black–Scholes implied volatility surface. We call it the model-free implied leverage (MFIL) and give several characterizations. In particular, we show its simple relation to the Black–Scholes implied volatility skew by an asymptotic method. Further to get an intuition, we demonstrate some explicit calculations under the Heston model. We report some empirical evidence from the time series of the MFIV and MFIL of the Nikkei stock average.


2018 ◽  
Vol 10 (6) ◽  
pp. 108
Author(s):  
Yao Elikem Ayekple ◽  
Charles Kofi Tetteh ◽  
Prince Kwaku Fefemwole

Using market covered European call option prices, the Independence Metropolis-Hastings Sampler algorithm for estimating Implied volatility in option pricing was proposed. This algorithm has an acceptance criteria which facilitate accurate approximation of this volatility from an independent path in the Black Scholes Model, from a set of finite data observation from the stock market. Assuming the underlying asset indeed follow the geometric brownian motion, inverted version of the Black Scholes model was used to approximate this Implied Volatility which was not directly seen in the real market: for which the BS model assumes the volatility to be a constant. Moreover, it is demonstrated that, the Implied Volatility from the options market tends to overstate or understate the actual expectation of the market. In addition, a 3-month market Covered European call option data, from 30 different stock companies was acquired from Optionistic.Com, which was used to estimate the Implied volatility. This accurately approximate the actual expectation of the market with low standard errors ranging between 0.0035 to 0.0275.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1878
Author(s):  
Siow Woon Jeng ◽  
Adem Kilicman

Rough Heston model possesses some stylized facts that can be used to describe the stock market, i.e., markets are highly endogenous, no statistical arbitrage mechanism, liquidity asymmetry for buy and sell order, and the presence of metaorders. This paper presents an efficient alternative to compute option prices under the rough Heston model. Through the decomposition formula of the option price under the rough Heston model, we manage to obtain an approximation formula for option prices that is simpler to compute and requires less computational effort than the Fourier inversion method. In addition, we establish finite error bounds of approximation formula of option prices under the rough Heston model for 0.1≤H<0.5 under a simple assumption. Then, the second part of the work focuses on the short-time implied volatility behavior where we use a second-order approximation on the implied volatility to match the terms of Taylor expansion of call option prices. One of the key results that we manage to obtain is that the second-order approximation for implied volatility (derived by matching coefficients of the Taylor expansion) possesses explosive behavior for the short-time term structure of at-the-money implied volatility skew, which is also present in the short-time option prices under rough Heston dynamics. Numerical experiments were conducted to verify the effectiveness of the approximation formula of option prices and the formulas for the short-time term structure of at-the-money implied volatility skew.


2019 ◽  
Vol 12 (4) ◽  
pp. 157
Author(s):  
Yun Yin ◽  
Peter G. Moffatt

We address a number of technical problems with the popular Practitioner Black-Scholes (PBS) method for valuing options. The method amounts to a two-stage procedure in which fitted values of implied volatilities (IV) from a linear regression are plugged into the Black-Scholes formula to obtain predicted option prices. Firstly we ensure that the prediction from stage one is positive by using log-linear regression. Secondly, we correct the bias that results from the transformation applied to the fitted values (i.e., the Black-Scholes formula) being a highly non-linear function of implied volatility. We apply the smearing technique in order to correct this bias. An alternative means of implementing the PBS approach is to use the market option price as the dependent variable and estimate the parameters of the IV equation by the method of non-linear least squares (NLLS). A problem we identify with this method is one of model incoherency: the IV equation that is estimated does not correspond to the set of option prices used to estimate it. We use the Monte Carlo method to verify that (1) standard PBS gives biased option values, both in-sample and out-of-sample; (2) using standard (log-linear) PBS with smearing almost completely eliminates the bias; (3) NLLS gives biased option values, but the bias is less severe than with standard PBS. We are led to conclude that, of the range of possible approaches to implementing PBS, log-linear PBS with smearing is preferred on the basis that it is the only approach that results in valuations with negligible bias.


2001 ◽  
Vol 04 (04) ◽  
pp. 651-675 ◽  
Author(s):  
JEAN-PIERRE FOUQUE ◽  
GEORGE PAPANICOLAOU ◽  
K. RONNIE SIRCAR

We describe a robust correction to Black-Scholes American derivatives prices that accounts for uncertain and changing market volatility. It exploits the tendency of volatility to cluster, or fast mean-reversion, and is simply calibrated from the observed implied volatility skew. The two-dimensional free-boundary problem for the derivative pricing function under a stochastic volatility model is reduced to a one-dimensional free-boundary problem (the Black-Scholes price) plus the solution of a fixed boundary-value problem. The formal asymptotic calculation that achieves this is presented here. We discuss numerical implementation and analyze the effect of the volatility skew.


2015 ◽  
Vol 18 (04) ◽  
pp. 1550025
Author(s):  
ERIK EKSTRÖM ◽  
BING LU

We show that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process. When such jumps do not exist, the implied volatility converges to the volatility of the Gaussian component of the underlying Lévy process as the time to maturity tends to zero. These results are proved by comparing the short-time asymptotics of the Black–Scholes price with explicit formulas for upper and lower bounds of option prices in exponential Lévy models.


2020 ◽  
Vol 7 (10) ◽  
pp. 201188
Author(s):  
Tushar Vaidya ◽  
Carlos Murguia ◽  
Georgios Piliouras

Black–Scholes (BS) is a remarkable quotation model for European option pricing in financial markets. Option prices are calculated using an analytical formula whose main inputs are strike (at which price to exercise) and volatility. The BS framework assumes that volatility remains constant across all strikes; however, in practice, it varies. How do traders come to learn these parameters? We introduce natural agent-based models, in which traders update their beliefs about the true implied volatility based on the opinions of other agents. We prove exponentially fast convergence of these opinion dynamics, using techniques from control theory and leader-follower models, thus providing a resolution between theory and market practices. We allow for two different models, one with feedback and one with an unknown leader.


2007 ◽  
Vol 10 (05) ◽  
pp. 817-835 ◽  
Author(s):  
MAX O. SOUZA ◽  
JORGE P. ZUBELLI

We consider the asymptotic behavior of options under stochastic volatility models for which the volatility process fluctuates on a much faster time scale than that defined by the riskless interest rate. We identify the distinguished asymptotic limits and, in contrast with previous studies, we deal with small volatility-variance (vol-vol) regimes. We derive the corresponding asymptotic formulae for option prices, and find that the first order correction displays a dependence on the hidden state and a non-diffusive terminal layer. Furthermore, this correction cannot be obtained as the small variance limit of the previous calculations. Our analysis also includes the behavior of the asymptotic expansion, when the hidden state is far from the mean. In this case, under suitable hypothesis, we show that the solution behaves as a constant volatility Black–Scholes model to all orders. In addition, we derive an asymptotic expansion for the implied volatility that is uniform in time. It turns out that the fast scale plays an important role in such uniformity. The theory thus obtained yields a more complete picture of the different asymptotics involved under stochastic volatility. It also clarifies the remarkable independence on the state of the volatility in the correction term obtained by previous authors.


Sign in / Sign up

Export Citation Format

Share Document