volatility surface
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 47)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 26 (1) ◽  
pp. 59-84
Author(s):  
Mathias Beiglböck ◽  
Gudmund Pammer ◽  
Walter Schachermayer

AbstractFamously, mathematical finance was started by Bachelier in his 1900 PhD thesis where – among many other achievements – he also provided a formal derivation of the Kolmogorov forward equation. This also forms the basis for Dupire’s (again formal) solution to the problem of finding an arbitrage-free model calibrated to a given volatility surface. The latter result has rigorous counterparts in the theorems of Kellerer and Lowther. In this survey article, we revisit these hallmarks of stochastic finance, highlighting the role played by some optimal transport results in this context.


Author(s):  
Hye-mee Kil ◽  
Jeong-Hoon Kim

Abstract The double-mean-reverting model, introduced by Gatheral [(2008). Consistent modeling of SPX and VIX options. In The Fifth World Congress of the Bachelier Finance Society London, July 18], is known to be a successful three-factor model that can be calibrated to both CBOE Volatility Index (VIX) and S&P 500 Index (SPX) options. However, the calibration of this model may be slow because there is no closed-form solution formula for European options. In this paper, we use a rescaled version of the model developed by Huh et al. [(2018). A scaled version of the double-mean-reverting model for VIX derivatives. Mathematics and Financial Economics 12: 495–515] and obtain explicitly a closed-form pricing formula for European option prices. Our formulas for the first and second-order approximations do not require any complicated calculation of integral. We demonstrate that a faster calibration result of the double-mean revering model is available and yet the practical implied volatility surface of SPX options can be produced. In particular, not only the usual convex behavior of the implied volatility surface but also the unusual concave down behavior as shown in the COVID-19 market can be captured by our formula.


2021 ◽  
Vol 173 ◽  
pp. 114640
Author(s):  
Hyeonuk Kim ◽  
Kyunghyun Park ◽  
Junkee Jeon ◽  
Changhoon Song ◽  
Jungwoo Bae ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 994
Author(s):  
Elisa Alòs ◽  
Jorge A. León

Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some empirical findings of the implied volatility surface through Hull and White type formulas. Thus, Malliavin calculus provides a natural approach to deal with the implied volatility without assuming any particular structure of the volatility. The aim of this paper is to provides the basic tools of Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and short memory of fBm improves the description of the implied volatility. In particular, we consider in detail a model that combines the long and short memory properties of fBm as an example of the approach introduced in this paper. The theoretical results are tested with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document