An L2-approximation method for construction and smoothing estimates of Markov semigroups for interacting diffusion processes on a lattice

Author(s):  
Yong Sul Won

We develop an [Formula: see text]-approximation strategy to study Markov semigroups generated by an infinite system of elliptic diffusion processes on a lattice. The proposed dynamics incorporate nearest neighbor interactions influencing diffusivity, which has received little attention so far as a mathematical problem. We prove the existence and the smoothness of Markov semigroups by extending the well-known pointwise estimation techniques such as the finite speed of propagation property and the Lyapunov function methods.

2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
John L. Fleming

When engineers model the magnetostatic fields applied to recording heads of computer hard drives due to a magnetic recording medium, the solution of Laplace's equation must be found. A popular solution method is based on Fourier analysis. However, due to the geometry of the read head model, an interesting mathematical problem arises. The coefficients for the Fourier series solution of the desired magnetic potential satisfy an infinite system of linear equations. In practice, the infinite system is truncated to a finite system with little consideration for the effect this truncation has on the solution. The paper will provide a proper understanding of the underlying problem and a formal analysis of the effect of truncation.


Sign in / Sign up

Export Citation Format

Share Document