<p style='text-indent:20px;'>Motivated by the studies of the hydrodynamics of the tethered bacteria <i>Thiovulum majus</i> in a liquid environment, we consider the following chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{split} & n_t = \Delta n-\nabla\cdot\left(n\chi(c)\nabla{c}\right)+nc, &x\in \Omega, t>0, \ & c_t = \Delta c-{\bf u}\cdot\nabla c-nc, &x\in \Omega, t>0\ \end{split} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a bounded convex domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^d(d\in\{2, 3\}) $\end{document}</tex-math></inline-formula> with smooth boundary. For any given fluid <inline-formula><tex-math id="M2">\begin{document}$ {\bf u} $\end{document}</tex-math></inline-formula>, it is proved that if <inline-formula><tex-math id="M3">\begin{document}$ d = 2 $\end{document}</tex-math></inline-formula>, the corresponding initial-boundary value problem admits a unique global classical solution which is uniformly bounded, while if <inline-formula><tex-math id="M4">\begin{document}$ d = 3 $\end{document}</tex-math></inline-formula>, such solution still exists under the additional condition that <inline-formula><tex-math id="M5">\begin{document}$ 0<\chi\leq \frac{1}{16\|c(\cdot, 0)\|_{L^\infty(\Omega)}} $\end{document}</tex-math></inline-formula>.</p>