scholarly journals Simple current extensions beyond semi-simplicity

2019 ◽  
Vol 22 (01) ◽  
pp. 1950001 ◽  
Author(s):  
Thomas Creutzig ◽  
Shashank Kanade ◽  
Andrew R. Linshaw

Let [Formula: see text] be a simple vertex operator algebra (VOA) and consider a representation category of [Formula: see text] that is a vertex tensor category in the sense of Huang–Lepowsky. In particular, this category is a braided tensor category. Let [Formula: see text] be an object in this category that is a simple current of order two of either integer or half-integer conformal dimension. We prove that [Formula: see text] is either a VOA or a super VOA. If the representation category of [Formula: see text] is in addition ribbon, then the categorical dimension of [Formula: see text] decides this parity question. Combining with Carnahan’s work, we extend this result to simple currents of arbitrary order. Our next result is a simple sufficient criterion for lifting indecomposable objects that only depends on conformal dimensions. Several examples of simple current extensions that are [Formula: see text]-cofinite and non-rational are then given and induced modules listed.

2002 ◽  
Vol 04 (02) ◽  
pp. 327-355 ◽  
Author(s):  
YI-ZHI HUANG ◽  
ANTUN MILAS

We apply the general theory of tensor products of modules for a vertex operator algebra (developed by Lepowsky and the first author) and the general theory of intertwining operator algebras (developed by the first author) to the case of the N=1 superconformal minimal models and related models in superconformal field theory. We show that for the category of modules for a vertex operator algebra containing a subalgebra isomorphic to a tensor product of rational vertex operator superalgebras associated to the N =1 Neveu–Schwarz Lie superalgebra, the intertwining operators among the modules have the associativity property, the category has a natural structure of vertex tensor category, and a number of related results hold. We obtain, as a corollary and special case, a construction of a braided tensor category structure on the category of finite direct sums of minimal modules of central charge [Formula: see text] for the N = 1 Neveu–Schwarz Lie superalgebra for any fixed integers p, q larger than 1 such that p - q ∈ 2ℤ and (p - q)/2 and q relatively prime to each other.


2005 ◽  
Vol 07 (03) ◽  
pp. 375-400 ◽  
Author(s):  
YI-ZHI HUANG

We show that if every module W for a vertex operator algebra V = ∐n∈ℤV(n) satisfies the condition dim W/C1(W)<∞, where C1(W) is the subspace of W spanned by elements of the form u-1w for u ∈ V+ = ∐n>0 V(n) and w ∈ W, then matrix elements of products and iterates of intertwining operators satisfy certain systems of differential equations. Moreover, for prescribed singular points, there exist such systems of differential equations such that the prescribed singular points are regular. The finiteness of the fusion rules is an immediate consequence of a result used to establish the existence of such systems. Using these systems of differential equations and some additional reductivity conditions, we prove that products of intertwining operators for V satisfy the convergence and extension property needed in the tensor product theory for V-modules. Consequently, when a vertex operator algebra V satisfies all the conditions mentioned above, we obtain a natural structure of vertex tensor category (consequently braided tensor category) on the category of V-modules and a natural structure of intertwining operator algebra on the direct sum of all (inequivalent) irreducible V-modules.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Mirko Primc

AbstractWe construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.


2007 ◽  
Vol 129 (2) ◽  
pp. 583-609 ◽  
Author(s):  
Chongying Dong ◽  
Robert L. Griess ◽  
Ching Hung. Lam

2012 ◽  
Vol 23 (10) ◽  
pp. 1250106 ◽  
Author(s):  
DONNY HURLEY ◽  
MICHAEL P. TUITE

We consider all genus zero and genus one correlation functions for the Virasoro vacuum descendants of a vertex operator algebra. These are described in terms of explicit generating functions that can be combinatorially expressed in terms of graph theory related to derangements in the genus zero case and to partial permutations in the genus one case.


Sign in / Sign up

Export Citation Format

Share Document